Quantum-Enhanced Reinforcement Learning for Power Grid Security Assessment
- URL: http://arxiv.org/abs/2504.14412v1
- Date: Sat, 19 Apr 2025 21:59:05 GMT
- Title: Quantum-Enhanced Reinforcement Learning for Power Grid Security Assessment
- Authors: Benjamin M. Peter, Mert Korkali,
- Abstract summary: reinforcement learning (RL) agents have been proposed to help grid operators navigate the massive decision space and nonlinear behavior of complex networks.<n>Applying RL to power grid security assessment, specifically for troublesomely troublesome contingency analysis problems, has proven difficult to scale.<n>The integration of quantum computing into these RL frameworks helps scale by improving computational efficiency and boosting agent proficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasingly challenging task of maintaining power grid security requires innovative solutions. Novel approaches using reinforcement learning (RL) agents have been proposed to help grid operators navigate the massive decision space and nonlinear behavior of these complex networks. However, applying RL to power grid security assessment, specifically for combinatorially troublesome contingency analysis problems, has proven difficult to scale. The integration of quantum computing into these RL frameworks helps scale by improving computational efficiency and boosting agent proficiency by leveraging quantum advantages in action exploration and model-based interdependence. To demonstrate a proof-of-concept use of quantum computing for RL agent training and simulation, we propose a hybrid agent that runs on quantum hardware using IBM's Qiskit Runtime. We also provide detailed insight into the construction of parameterized quantum circuits (PQCs) for generating relevant quantum output. This agent's proficiency at maintaining grid stability is demonstrated relative to a benchmark model without quantum enhancement using N-k contingency analysis. Additionally, we offer a comparative assessment of the training procedures for RL models integrated with a quantum backend.
Related papers
- Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning [5.673361333697935]
Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL)<n>We introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL)
arXiv Detail & Related papers (2024-12-12T00:51:41Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
We propose differentiable quantum architecture search (DiffQAS) to enable trainable circuit parameters and structure weights.
We show that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures.
arXiv Detail & Related papers (2024-07-25T17:11:00Z) - Quantum Multi-Agent Reinforcement Learning for Aerial Ad-hoc Networks [0.19791587637442667]
This paper presents an aerial communication use case and introduces a hybrid quantum-classical (HQC) ML algorithm to solve it.
Results show a slight increase in performance for the quantum-enhanced solution with respect to a comparable classical algorithm.
These promising results show the potential of QMARL to industrially-relevant complex use cases.
arXiv Detail & Related papers (2024-04-26T15:57:06Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Stochastic Quantum Power Flow for Risk Assessment in Power Systems [0.0]
This paper introduces the first quantum computing framework for Quantum Power Flow (SQPF) analysis in power systems.<n>The proposed method leverages quantum states to encode power flow distributions, enabling the use of Quantum Monte Carlo sampling to efficiently assess the probability of line overloads.<n>We validate the method on two test systems, demonstrating the computational advantage of quantum algorithms in reducing sample complexity while maintaining accuracy.
arXiv Detail & Related papers (2023-10-03T16:59:26Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
This paper proposes a machine learning-based method to construct quantum circuit architectures.
We present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge.
arXiv Detail & Related papers (2021-12-10T19:07:56Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.