論文の概要: WMKA-Net: A Weighted Multi-Kernel Attention NetworkMethod for Retinal Vessel Segmentation
- arxiv url: http://arxiv.org/abs/2504.14888v1
- Date: Mon, 21 Apr 2025 06:32:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 19:20:26.510188
- Title: WMKA-Net: A Weighted Multi-Kernel Attention NetworkMethod for Retinal Vessel Segmentation
- Title(参考訳): WMKA-Net:網膜血管セグメンテーションのための重み付きマルチカーネル注意ネットワーク手法
- Authors: Xinran Xu, Yuliang Ma, Sifu Cai,
- Abstract要約: 本稿では,網膜血管セグメンテーションにおけるマルチスケール機能キャプチャの不足,コンテキスト情報の喪失,ノイズ感度といった問題に対処する新しい網膜血管セグメンテーションネットワークを提案する。
WMKA-Netは、いくつかの革新的なコンポーネントを統合することにより、小型船と低コントラスト領域のセグメンテーション性能を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.864156704238198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel retinal vessel segmentation network, the Weighted Multi-Kernel Attention Network (WMKA-Net), which aims to address the issues of insufficient multiscale feature capture, loss of contextual information, and noise sensitivity in retinal vessel segmentation. WMKA-Net significantly improves the segmentation performance of small vessels and low-contrast regions by integrating several innovative components, including the MultiKernelFeature Fusion Module (MKDC), the Progressive Feature Weighting Fusion Strategy (UDFF), and the Attention Mechanism Module (AttentionBlock). The MKDC module employs multiscale parallel convolutional kernels to extract vessel characteristics, thereby enhancing the ability to capture complex vascular structures. The UDFF strategy optimizes the transmission of feature information by weighted fusion of high- and low-level features. The AttentionBlock highlights key regions and suppresses noise interference through the attention mechanism. Experimental results demonstrate that WMKA-Net achieves excellent segmentation performance in multiple public datasets, particularly in segmentation of small vessels and processing of pathological regions. This work provides a robust and efficient new method for segmentation of the retinal vessel.
- Abstract(参考訳): 本稿では,網膜血管セグメンテーションネットワークWMKA-Net(Weighted Multi-Kernel Attention Network)を提案する。
WMKA-Netは、MKDC(MultiKernelFeature Fusion Module)、UDFF(Progressive Feature Weighting Fusion Strategy)、Attention Mechanism Module(AttentionBlock)など、いくつかの革新的なコンポーネントを統合することで、小型船と低コントラスト領域のセグメンテーション性能を大幅に改善する。
MKDCモジュールはマルチスケールの並列畳み込みカーネルを用いて血管の特徴を抽出し、複雑な血管構造を捕捉する能力を高める。
UDFF戦略は,高次・低次特徴の重み付け融合による特徴情報の伝達を最適化する。
AttentionBlockはキー領域をハイライトし、アテンション機構を通じてノイズ干渉を抑制する。
実験により,WMKA-Netは複数の公開データセットにおいて,特に小血管のセグメンテーションや病理領域の処理において,優れたセグメンテーション性能を発揮することが示された。
この研究は、網膜血管のセグメンテーションのための堅牢で効率的な新しい方法を提供する。
関連論文リスト
- MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection [0.0]
本稿では、3つのキーコンポーネントを統合したMSCA-Netという新しいネットワークアーキテクチャを提案する。
MSEDAは、異なるスケールにわたる情報を適応的に集約するために、マルチスケールのフュージョンアテンション機構を使用している。
PCBAMは相関行列に基づく戦略によりグローバル特徴と局所特徴の相関を捉える。
論文 参考訳(メタデータ) (2025-03-21T14:42:31Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - MCA: Moment Channel Attention Networks [10.780493635885225]
ニューラルネットワーク内の特徴写像の統計モーメントについて検討する。
本研究は,モデルキャパシティ向上における高次モーメントの重要性を明らかにする。
モーメントチャネル注意(MCA)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-04T04:02:59Z) - A Discriminative Channel Diversification Network for Image
Classification [21.049734250642974]
そこで本稿では,グローバルなコンテキストを改善するために,チャネル多様化ブロックと呼ばれる軽量で効果的なアテンションモジュールを提案する。
他のチャネルアテンション機構とは異なり、提案モジュールは最も識別性の高い特徴に焦点を当てている。
CIFAR-10、SVHN、Tiny-ImageNetのデータセットに対する実験により、提案モジュールはベースラインネットワークの性能を平均で3%向上することを示した。
論文 参考訳(メタデータ) (2021-12-10T23:00:53Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
本稿では,視覚的エンコーダをマルチモーダルな特徴学習ネットワークに変換するエンコーダ融合ネットワーク(EFN)を提案する。
EFNには、マルチモーダル機能の並列更新を実現するコアテンションメカニズムが組み込まれている。
4つのベンチマークデータセットによる実験結果から,提案手法がポストプロセッシングを伴わずに最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-05T02:27:25Z) - Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images [9.398340832493457]
この問題に対処するための線形注意機構(LAM)を提案する。
LAMは、計算効率の高いドット積アテンションとほぼ同値である。
微細なリモートセンシング画像からのセマンティックセグメンテーションのためのマルチステージアテンションResU-Netを設計する。
論文 参考訳(メタデータ) (2020-11-29T07:24:21Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。