Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
- URL: http://arxiv.org/abs/2504.15130v1
- Date: Mon, 21 Apr 2025 14:25:32 GMT
- Title: Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
- Authors: Kushal Shah, Jihyun Park, Seung-Kyum Choi,
- Abstract summary: This paper presents a new algorithm that combines a Priority Guided Task Matching (PGTM) Module with Neural STA* (Space-Time A*), a data-driven path planning method.<n>Tests against state-of-the-art MAPD algorithms, including TPTS, CENTRAL, RMCA, LNS-PBS, and LNS-wPBS, demonstrate the superior scalability, solution quality, and computational efficiency of Neural ATTF.
- Score: 0.5701273481078372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Agent Pickup and Delivery (MAPD) is a fundamental problem in robotics, particularly in applications such as warehouse automation and logistics. Existing solutions often face challenges in scalability, adaptability, and efficiency, limiting their applicability in dynamic environments with real-time planning requirements. This paper presents Neural ATTF (Adaptive Task Token Framework), a new algorithm that combines a Priority Guided Task Matching (PGTM) Module with Neural STA* (Space-Time A*), a data-driven path planning method. Neural STA* enhances path planning by enabling rapid exploration of the search space through guided learned heuristics and ensures collision avoidance under dynamic constraints. PGTM prioritizes delayed agents and dynamically assigns tasks by prioritizing agents nearest to these tasks, optimizing both continuity and system throughput. Experimental evaluations against state-of-the-art MAPD algorithms, including TPTS, CENTRAL, RMCA, LNS-PBS, and LNS-wPBS, demonstrate the superior scalability, solution quality, and computational efficiency of Neural ATTF. These results highlight the framework's potential for addressing the critical demands of complex, real-world multi-agent systems operating in high-demand, unpredictable settings.
Related papers
- Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
We propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution.
Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication.
arXiv Detail & Related papers (2025-04-11T01:46:18Z) - An Expectation-Maximization Algorithm-based Autoregressive Model for the Fuzzy Job Shop Scheduling Problem [12.862865254507177]
The fuzzy job shop scheduling problem (FJSSP) emerges as an innovative extension to the job shop scheduling problem (JSSP)
This paper investigates the feasibility of employing neural networks to assimilate and process fuzzy information for the resolution of FJSSP.
arXiv Detail & Related papers (2025-01-11T10:20:16Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.<n>To this end, insights from a digital twin with real-world wireless ray tracing data are explored.<n>Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM)<n>In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG)<n> Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
arXiv Detail & Related papers (2024-11-13T02:41:02Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
Task offloading is a potential solution to satisfy the strict requirements of latencysensitive vehicular applications due to the limited onboard computing resources.
We propose a creative structural knowledge-driven meta-learning (SKDML) method, involving both the model-based AM algorithm and neural networks.
arXiv Detail & Related papers (2024-02-25T03:31:59Z) - Graph Neural Networks for the Offline Nanosatellite Task Scheduling Problem [6.864319769054665]
This study investigates how to schedule nanosatellite tasks more efficiently using Graph Neural Networks (GNNs)<n>The goal is to find the optimal schedule for tasks to be carried out in orbit while taking into account Quality-of-Service (QoS) considerations.
arXiv Detail & Related papers (2023-03-24T03:17:28Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
We propose a novel framework called Jump-Operator Dynamic Programming for quickly computing solutions within a super-exponential space of sequential sub-goal tasks.
This approach involves controlling over an ensemble of reusable goal-conditioned polices functioning as temporally extended actions.
We then identify classes of objective functions on this subspace whose solutions are invariant to the grounding, resulting in optimal zero-shot transfer.
arXiv Detail & Related papers (2020-07-06T05:13:20Z) - STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic
Routing in SDN [6.27420060051673]
Dynamic routing in software-defined networking (SDN) can be viewed as a centralized decision-making problem.
We propose a novel model-free framework for dynamic routing in SDN, which is referred to as SDN-temporal deterministic policy gradient (STDPG) agent.
STDPG achieves better routing solutions in terms of average end-to-end delay.
arXiv Detail & Related papers (2020-04-21T07:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.