FlowReasoner: Reinforcing Query-Level Meta-Agents
- URL: http://arxiv.org/abs/2504.15257v1
- Date: Mon, 21 Apr 2025 17:35:42 GMT
- Title: FlowReasoner: Reinforcing Query-Level Meta-Agents
- Authors: Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin, Tianyu Pang,
- Abstract summary: This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems.<n>Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback.
- Score: 63.602173107171076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at https://github.com/sail-sg/FlowReasoner.
Related papers
- RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory [57.449129198822476]
RCR is a role-aware context routing framework for multi-agent large language model (LLM) systems.<n>It dynamically selects semantically relevant memory subsets for each agent based on its role and task stage.<n>A lightweight scoring policy guides memory selection, and agent outputs are integrated into a shared memory store.
arXiv Detail & Related papers (2025-08-06T21:59:34Z) - PRGB Benchmark: A Robust Placeholder-Assisted Algorithm for Benchmarking Retrieval-Augmented Generation [15.230902967865925]
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge.<n>Current benchmarks emphasize broad aspects such as noise robustness, but lack a systematic and granular evaluation framework on document utilization.<n>Our benchmark provides a reproducible framework for developing more reliable and efficient RAG systems.
arXiv Detail & Related papers (2025-07-23T16:14:08Z) - CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
We introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems.<n>Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines.
arXiv Detail & Related papers (2025-07-04T02:20:19Z) - AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
arXiv Detail & Related papers (2025-06-06T12:07:23Z) - ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation [71.31634636156384]
We introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI based on task descriptions automatically.
ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent.
FlowDataset is a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench is a benchmark for evaluating workflow generation systems.
arXiv Detail & Related papers (2025-03-22T06:48:50Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning [76.10639521319382]
We propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework.<n>We show that Symbolic-MoE's instance-level expert selection improves performance by a large margin but -- when implemented naively -- can introduce a high computational overhead.
arXiv Detail & Related papers (2025-03-07T18:03:13Z) - RAG-Gym: Optimizing Reasoning and Search Agents with Process Supervision [43.50113345998687]
We introduce RAG-Gym, a unified optimization framework that enhances information-seeking agents through fine-grained process supervision at each search step.
We also propose ReSearch, a novel agent architecture that synergizes answer reasoning and search query generation within the RAG-Gym framework.
arXiv Detail & Related papers (2025-02-19T18:56:03Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.
On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Large Language Models for Power Scheduling: A User-Centric Approach [6.335540414370735]
We introduce a novel architecture for resource scheduling problems by converting an arbitrary user's voice request (VRQ) into a resource allocation vector.
Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an OP solving agent.
arXiv Detail & Related papers (2024-06-29T15:47:28Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuest is a framework where benchmarks and metrics are modular and easily through well documented and easy-to-use APIs.
We offer two new evaluation metrics that can reliably track LLM agent progress while solving a task.
We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase.
arXiv Detail & Related papers (2024-04-09T16:01:24Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.