Leveraging Language Models for Automated Patient Record Linkage
- URL: http://arxiv.org/abs/2504.15261v1
- Date: Mon, 21 Apr 2025 17:41:15 GMT
- Title: Leveraging Language Models for Automated Patient Record Linkage
- Authors: Mohammad Beheshti, Lovedeep Gondara, Iris Zachary,
- Abstract summary: This study investigates the feasibility of leveraging language models for automated patient record linkage.<n>We utilize real-world healthcare data from the Missouri Cancer Registry and Research Center.
- Score: 0.5461938536945723
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objective: Healthcare data fragmentation presents a major challenge for linking patient data, necessitating robust record linkage to integrate patient records from diverse sources. This study investigates the feasibility of leveraging language models for automated patient record linkage, focusing on two key tasks: blocking and matching. Materials and Methods: We utilized real-world healthcare data from the Missouri Cancer Registry and Research Center, linking patient records from two independent sources using probabilistic linkage as a baseline. A transformer-based model, RoBERTa, was fine-tuned for blocking using sentence embeddings. For matching, several language models were experimented under fine-tuned and zero-shot settings, assessing their performance against ground truth labels. Results: The fine-tuned blocking model achieved a 92% reduction in the number of candidate pairs while maintaining near-perfect recall. In the matching task, fine-tuned Mistral-7B achieved the best performance with only 6 incorrect predictions. Among zero-shot models, Mistral-Small-24B performed best, with a total of 55 incorrect predictions. Discussion: Fine-tuned language models achieved strong performance in patient record blocking and matching with minimal errors. However, they remain less accurate and efficient than a hybrid rule-based and probabilistic approach for blocking. Additionally, reasoning models like DeepSeek-R1 are impractical for large-scale record linkage due to high computational costs. Conclusion: This study highlights the potential of language models for automating patient record linkage, offering improved efficiency by eliminating the manual efforts required to perform patient record linkage. Overall, language models offer a scalable solution that can enhance data integration, reduce manual effort, and support disease surveillance and research.
Related papers
- PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare [2.1046377530356764]
Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task.
PatientDx is a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data.
arXiv Detail & Related papers (2025-04-24T08:21:04Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.
Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.
We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.<n>We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.<n>Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Classification of Radiological Text in Small and Imbalanced Datasets in a Non-English Language [8.93554009307115]
Natural language processing can underperform in real-world applications involving small datasets in a non-English language.
We evaluated a set of NLP models including BERT-like transformers, few-shot learning with sentence transformers (SetFit), and prompted large language models (LLM)
Our results indicate that BERT-like models pretrained in the target domain of radiology reports currently offer the optimal performances for this scenario.
arXiv Detail & Related papers (2024-09-30T09:52:28Z) - Utilizing Large Language Models to Generate Synthetic Data to Increase the Performance of BERT-Based Neural Networks [0.7071166713283337]
We created datasets large enough to train machine learning models.
Our goal is to label behaviors corresponding to autism criteria.
Augmenting data increased recall by 13% but decreased precision by 16%.
arXiv Detail & Related papers (2024-05-08T03:18:12Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
Fine-tuning language models(LMs) on human-generated data remains a prevalent practice.
We investigate whether we can go beyond human data on tasks where we have access to scalar feedback.
We find that ReST$EM$ scales favorably with model size and significantly surpasses fine-tuning only on human data.
arXiv Detail & Related papers (2023-12-11T18:17:43Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
Large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines.
Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations'
In this work, we fine-tune language models to be more factual, without human labeling.
arXiv Detail & Related papers (2023-11-14T18:59:15Z) - A Few-Shot Approach to Dysarthric Speech Intelligibility Level
Classification Using Transformers [0.0]
Dysarthria is a speech disorder that hinders communication due to difficulties in articulating words.
Much of the literature focused on improving ASR systems for dysarthric speech.
This work aims to develop models that can accurately classify the presence of dysarthria.
arXiv Detail & Related papers (2023-09-17T17:23:41Z) - PRISM: Mitigating EHR Data Sparsity via Learning from Missing Feature Calibrated Prototype Patient Representations [7.075420686441701]
PRISM is a framework that indirectly imputes data by leveraging prototype representations of similar patients.<n> PRISM also includes a feature confidence module, which evaluates the reliability of each feature considering missing statuses.<n>Our experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks.
arXiv Detail & Related papers (2023-09-08T07:01:38Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.