Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
- URL: http://arxiv.org/abs/2504.17207v1
- Date: Thu, 24 Apr 2025 02:41:34 GMT
- Title: Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
- Authors: Phillip Y. Lee, Jihyeon Je, Chanho Park, Mikaela Angelina Uy, Leonidas Guibas, Minhyuk Sung,
- Abstract summary: We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation.<n>Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC)<n>Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework.
- Score: 14.157948867532832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
Related papers
- VLM4D: Towards Spatiotemporal Awareness in Vision Language Models [66.833085504228]
We introduce V4DLM, the first benchmark specifically designed to evaluate visual language models (VLMs)<n>Our benchmark comprises diverse real-world and synthetic videos accompanied by carefully curated question-answer pairs.<n>We identify significant performance gaps compared to human baselines, highlighting fundamental deficiencies in existing models.
arXiv Detail & Related papers (2025-08-04T06:06:06Z) - Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers [90.4459196223986]
A similar evolution is now unfolding in AI, marking a paradigm shift from models that merely think about images to those that can truly think with images.<n>This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace.
arXiv Detail & Related papers (2025-06-30T14:48:35Z) - Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing [62.447497430479174]
Drawing to reason in space is a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space.<n>Our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks.
arXiv Detail & Related papers (2025-06-11T17:41:50Z) - Argus: Vision-Centric Reasoning with Grounded Chain-of-Thought [83.89629325805505]
We introduce Argus to address limitations with a new visual attention grounding mechanism.<n>Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention.
arXiv Detail & Related papers (2025-05-29T17:59:56Z) - Thinking with Generated Images [30.28526622443551]
We present Thinking with Generated Images, a novel paradigm that transforms how large multimodal models (LMMs) engage with visual reasoning.<n>Our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking.
arXiv Detail & Related papers (2025-05-28T16:12:45Z) - Probing and Inducing Combinational Creativity in Vision-Language Models [52.76981145923602]
Recent advances in Vision-Language Models (VLMs) have sparked debate about whether their outputs reflect combinational creativity.
We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels.
To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework.
arXiv Detail & Related papers (2025-04-17T17:38:18Z) - Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis [19.032828729570458]
We use established principles and explanations from psychology and cognitive science related to complexity in human visual perception.<n>Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception.
arXiv Detail & Related papers (2025-04-16T22:14:27Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.<n>Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - Learning Interpretable Logic Rules from Deep Vision Models [6.854329442341952]
VisionLogic is a framework to extract interpretable logic rules from deep vision models.
It provides local explanations for single images and global explanations for specific classes.
VisionLogic also facilitates the study of visual concepts encoded by predicates.
arXiv Detail & Related papers (2025-03-13T17:04:04Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
This paper introduces a structured evaluation framework using Bongard Problems (BPs) to dissect the perception-reasoning interface in Vision-Language Models (VLMs)<n>We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.<n>Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
Large language models (LLMs) trained exclusively through next-token prediction over language data exhibit remarkably human-like behaviors.<n>Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized?<n>Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts.<n>These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding.
arXiv Detail & Related papers (2025-01-21T23:54:17Z) - Imagine while Reasoning in Space: Multimodal Visualization-of-Thought [70.74453180101365]
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)<n>We propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT)<n>It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces.
arXiv Detail & Related papers (2025-01-13T18:23:57Z) - Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios [69.00444996464662]
We propose RIV-CoT, a Retrieval-Based Interleaved Visual Chain-of-Thought method that enables vision-language models to reason using visual crops corresponding to relevant entities.<n>Our experiments demonstrate that RIV-CoT improves answer accuracy by 3.1% and reasoning accuracy by 4.6% over vanilla CoT prompting.
arXiv Detail & Related papers (2025-01-08T18:31:16Z) - When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
We investigate how aligning vision model representations to human perceptual judgments impacts their usability.
We find that aligning models to perceptual judgments yields representations that improve upon the original backbones across many downstream tasks.
Our results suggest that injecting an inductive bias about human perceptual knowledge into vision models can contribute to better representations.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Dual Thinking and Logical Processing -- Are Multi-modal Large Language Models Closing the Gap with Human Vision ? [5.076961098583674]
We introduce a novel adversarial dataset to provide evidence for the dual thinking framework in human vision.
Our psychophysical studies show the presence of multiple inferences in rapid succession.
Analysis of errors shows that the early stopping of visual processing can result in missing relevant information.
arXiv Detail & Related papers (2024-06-11T05:50:34Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images.
We first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features.
We then come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words.
arXiv Detail & Related papers (2020-11-23T18:21:49Z) - Self-supervised Learning from a Multi-view Perspective [121.63655399591681]
We show that self-supervised representations can extract task-relevant information and discard task-irrelevant information.
Our theoretical framework paves the way to a larger space of self-supervised learning objective design.
arXiv Detail & Related papers (2020-06-10T00:21:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.