論文の概要: Optimal Distribution of Solutions for Crowding Distance on Linear Pareto Fronts of Two-Objective Optimization Problems
- arxiv url: http://arxiv.org/abs/2504.17222v1
- Date: Thu, 24 Apr 2025 03:22:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.234225
- Title: Optimal Distribution of Solutions for Crowding Distance on Linear Pareto Fronts of Two-Objective Optimization Problems
- Title(参考訳): 2目的最適化問題の線形パレートフロントにおける群集距離の最適分布
- Authors: Hisao Ishibuchi, Lie Meng Pang,
- Abstract要約: NSGA-IIは最適化すべき明確な基準に基づいていない。
最も簡単な条件下で,群集距離の最適分布について検討する。
- 参考スコア(独自算出の注目度): 5.072077366588175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characteristics of an evolutionary multi-objective optimization (EMO) algorithm can be explained using its best solution set. For example, the best solution set for SMS-EMOA is the same as the optimal distribution of solutions for hypervolume maximization. For NSGA-III, if the Pareto front has intersection points with all reference lines, all of those intersection points are the best solution set. For MOEA/D, the best solution set is the set of the optimal solution of each sub-problem. Whereas these EMO algorithms can be analyzed in this manner, the best solution set for the most well-known and frequently-used EMO algorithm NSGA-II has not been discussed in the literature. This is because NSGA-II is not based on any clear criterion to be optimized (e.g., hypervolume maximization, distance minimization to the nearest reference line). As the first step toward the best solution set analysis for NSGA-II, we discuss the optimal distribution of solutions for the crowding distance under the simplest setting: the maximization of the minimum crowding distance on linear Pareto fronts of two-objective optimization problems. That is, we discuss the optimal distribution of solutions on a straight line. Our theoretical analysis shows that the uniformly distributed solutions are not the best solution set. However, it is also shown by computational experiments that the uniformly distributed solutions (except for the duplicated two extreme solutions at each edge of the Pareto front) are obtained from a modified NSGA-II with the ($\mu$ + 1) generation update scheme.
- Abstract(参考訳): 進化的多目的最適化(EMO)アルゴリズムの特徴は、その最適解集合を用いて説明できる。
例えば、SMS-EMOAの最適解集合は、超体積最大化のための解の最適分布と同じである。
NSGA-III の場合、パレートフロントがすべての基準線との交点を持つならば、これらの交点はすべて最良の解集合である。
MOEA/D に対して、最良の解集合は各部分確率の最適解の集合である。
これらのEMOアルゴリズムは、このような方法で分析できるが、最もよく知られ、頻繁に使用されるEMOアルゴリズムNSGA-IIの最適解セットは、文献では議論されていない。
これはNSGA-IIが最適化すべき明確な基準に基づいていないためである(例えば、超体積最大化、最も近い基準線への距離最小化)。
NSGA-IIの最適解集合解析への第一歩として、最も単純な設定下での群集距離に対する解の最適分布について論じる: 2目的最適化問題の線形パレート面上での最小群集距離の最大化。
すなわち、解の最適分布を直線上で議論する。
我々の理論的解析は、一様分散解が最良の解集合ではないことを示している。
しかし、計算実験により、一様分散解(パレートフロントの各端で重複した2つの極端な解を除く)は、(\mu$ + 1) 世代更新スキームで修正されたNSGA-IIから得られることが示されている。
関連論文リスト
- Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
拡張ラグランジアンに基づくmin-max問題のスムーズな変種を提案する。
提案アルゴリズムは, 段階的戦略よりも目的数で拡張性が高い。
論文 参考訳(メタデータ) (2025-03-16T11:05:51Z) - Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - Optimization on Pareto sets: On a theory of multi-objective optimization [7.907376287850398]
多目的最適化では、単一の決定ベクトルは、多くの目的間のトレードオフのバランスをとる必要がある。
我々は,制約セットの最適化を目標とする,より現実的に重要な最適化問題を考える。
論文 参考訳(メタデータ) (2023-08-04T05:55:52Z) - Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization [108.35402316802765]
本稿では,新しい一階最適化アルゴリズムであるAcceleratedGradient-OptimisticGradient (AG-OG) Ascentを提案する。
我々はAG-OGが様々な設定に対して最適収束率(定数まで)を達成することを示す。
アルゴリズムを拡張して設定を拡張し、bi-SC-SCとbi-C-SCの両方で最適な収束率を達成する。
論文 参考訳(メタデータ) (2022-10-31T17:59:29Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Surrogate-Assisted Reference Vector Adaptation to Various Pareto Front
Shapes for Many-Objective Bayesian Optimization [0.0]
本稿では,高コストな多目的・多目的最適化問題を解くために,代用型参照ベクトル適応法(SRVA)を提案する。
提案アルゴリズムは他の2つのMBOアルゴリズムとベンチマーク問題に適用して比較する。
実験結果から, 対象関数がKrigingモデルにより合理的に近似された問題において, 提案アルゴリズムが他の2つより優れていることが示された。
論文 参考訳(メタデータ) (2021-10-10T03:05:12Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Augmenting High-dimensional Nonlinear Optimization with Conditional GANs [0.0]
本稿では,逆最適化アルゴリズムを補完する生成モデルを提案する。
生成モデルは、オリジナルのソリューションよりも100%優れた多様性を持つソリューションを生成します。
単純なトレーニングアプローチや単純なトレーニングさえも、高次元問題に対する逆アルゴリズムによって見つかる解の多様性と最適性を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-02-20T18:07:33Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Ensuring smoothly navigable approximation sets by Bezier curve
parameterizations in evolutionary bi-objective optimization -- applied to
brachytherapy treatment planning for prostate cancer [0.0]
決定空間における滑らかなベジエ曲線として近似集合をパラメータ化する場合について検討する。
高品質な近似集合をBezEAで得ることができ、時には支配とUHVに基づくアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-11T13:57:33Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
いくつかの問題には、多くの非支配的な解をもたらす多くの目的がある。
本稿では,最も重要な解を得るために設計された新しいアルゴリズムを提案する。
このアルゴリズムは無人航空機(UAV)ミッション計画問題における実世界の応用に応用されている。
論文 参考訳(メタデータ) (2020-02-20T17:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。