論文の概要: Modes of Sequence Models and Learning Coefficients
- arxiv url: http://arxiv.org/abs/2504.18048v1
- Date: Fri, 25 Apr 2025 03:38:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.631432
- Title: Modes of Sequence Models and Learning Coefficients
- Title(参考訳): シーケンスモデルと学習係数のモード
- Authors: Zhongtian Chen, Daniel Murfet,
- Abstract要約: 変換器ネットワークにおける損失ランドスケープの計測可能な特性とデータ中のパターンをリンクするシーケンスモデリングの幾何学的記述を開発する。
局所学習係数の推定値がデータ依存しきい値以下のモードに無関心であることを理論的に示す。
この洞察は、ネットワークパラメータが人口減少の厳格な最小限ではない場合でも、なぜ信頼できるLLC推定値が得られるのかを明らかにする。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a geometric account of sequence modelling that links patterns in the data to measurable properties of the loss landscape in transformer networks. First, we cast conditional sequence distributions into a Hilbert-space framework and apply tensor decompositions to identify their principal modes. Truncating the small-amplitude modes yields an effective data distribution that preserves dominant structure while discarding statistical detail. Second, we show theoretically that Local Learning Coefficient (LLC) estimates are insensitive to modes below a data-dependent threshold. Consequently, the LLC calculated in practice characterises the geometry of the effective rather than the true distribution. This insight clarifies why reliable LLC estimates can be obtained even when a network parameter is not a strict minimiser of the population loss, and it highlights how the inverse temperature in SGLD acts as a resolution dial on the landscape structure.
- Abstract(参考訳): 変換器ネットワークにおける損失ランドスケープの計測可能な特性とデータ中のパターンをリンクするシーケンスモデリングの幾何学的記述を開発する。
まず、条件列分布をヒルベルト空間のフレームワークにキャストし、テンソル分解を適用してそれらの主モードを同定する。
小振幅モードを切断すると、統計的詳細を破棄しながら支配的な構造を保存する効果的なデータ分布が得られる。
第2に、局所学習係数(LLC)の推定値が、データ依存しきい値以下のモードに無関心であることを理論的に示す。
結果として、実際に計算されたLLCは、真の分布よりも効果の幾何学を特徴づける。
この知見は、ネットワークパラメータが人口減少の厳密な最小限ではない場合でも、なぜ信頼できるLLC推定が得られるのかを明らかにし、SGLDの逆温度がランドスケープ構造上の解像度ダイアルとしてどのように振る舞うかを強調している。
関連論文リスト
- Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
条件付き平均モデルにおける回帰係数を推定するための推論フレームワークを提案する。
提案手法は,正規化推定器を適応度スコア(PS)と結果回帰(OR)モデルの両方に用い,拡張逆確率重み付き(AIPW)法を開発した。
我々の理論的な知見は、広範囲なシミュレーション研究と実世界のデータ応用を通して検証される。
論文 参考訳(メタデータ) (2024-06-20T00:34:54Z) - Efficient Generative Modeling via Penalized Optimal Transport Network [1.8079016557290342]
本稿では,Wartherally-penalized Wasserstein (MPW) 距離に基づく多目的深部生成モデルを提案する。
MPW距離を通じて、POTNetは、低次元の辺縁情報を利用して、関節分布の全体的アライメントを導出する。
我々は,MPW損失の一般化誤差に基づく非漸近的境界を導出し,POTNetで学習した生成分布の収束率を確立する。
論文 参考訳(メタデータ) (2024-02-16T05:27:05Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
ユニタリネットワーク(POU-Nets)の分割は、回帰とPDEの解に対する代数収束率を実現することができる。
ガウス雑音モデルを用いてPOU-Netを拡張し、最大可算損失の勾配に基づく一般化を導出できる確率的一般化を得る。
本研究では,高次元・低次元での性能を定量化するためのベンチマークを行い,高次元空間内のデータの潜在次元にのみ依存することを示す。
論文 参考訳(メタデータ) (2021-07-07T08:02:00Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
GAN(Generative Adversarial Networks)は教師なし学習において大きな成功を収めている。
本稿では,H'older空間における密度データ分布推定のためのGANの近似と統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-10T16:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。