WLTCL: Wide Field-of-View 3-D LiDAR Truck Compartment Automatic Localization System
- URL: http://arxiv.org/abs/2504.18870v1
- Date: Sat, 26 Apr 2025 09:35:47 GMT
- Title: WLTCL: Wide Field-of-View 3-D LiDAR Truck Compartment Automatic Localization System
- Authors: Guodong Sun, Mingjing Li, Dingjie Liu, Mingxuan Liu, Bo Wu, Yang Zhang,
- Abstract summary: We propose an innovative wide field-of-view 3-D LiDAR vehicle compartment automatic localization system.<n>For vehicles of various sizes, this system leverages the LiDAR to generate high-density point clouds within an extensive field-of-view range.<n>Our compartment key point positioning algorithm utilizes the geometric features of the compartments to accurately locate the corner points.
- Score: 9.07574138083974
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As an essential component of logistics automation, the automated loading system is becoming a critical technology for enhancing operational efficiency and safety. Precise automatic positioning of the truck compartment, which serves as the loading area, is the primary step in automated loading. However, existing methods have difficulty adapting to truck compartments of various sizes, do not establish a unified coordinate system for LiDAR and mobile manipulators, and often exhibit reliability issues in cluttered environments. To address these limitations, our study focuses on achieving precise automatic positioning of key points in large, medium, and small fence-style truck compartments in cluttered scenarios. We propose an innovative wide field-of-view 3-D LiDAR vehicle compartment automatic localization system. For vehicles of various sizes, this system leverages the LiDAR to generate high-density point clouds within an extensive field-of-view range. By incorporating parking area constraints, our vehicle point cloud segmentation method more effectively segments vehicle point clouds within the scene. Our compartment key point positioning algorithm utilizes the geometric features of the compartments to accurately locate the corner points, providing stackable spatial regions. Extensive experiments on our collected data and public datasets demonstrate that this system offers reliable positioning accuracy and reduced computational resource consumption, leading to its application and promotion in relevant fields.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
This study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process.
Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
arXiv Detail & Related papers (2024-01-13T01:22:20Z) - A Large-Scale Car Parts (LSCP) Dataset for Lightweight Fine-Grained
Detection [0.23020018305241333]
This paper presents a large-scale and fine-grained automotive dataset consisting of 84,162 images for detecting 12 different types of car parts.
To alleviate the burden of manual annotation, we propose a novel semi-supervised auto-labeling method.
We also study the limitations of the Grounding DINO approach for zero-shot labeling.
arXiv Detail & Related papers (2023-11-20T13:30:42Z) - Advancements in 3D Lane Detection Using LiDAR Point Clouds: From Data Collection to Model Development [10.78971892551972]
LiSV-3DLane is a large-scale 3D lane dataset that comprises 20k frames of surround-view LiDAR point clouds with enriched semantic annotation.
We propose a novel LiDAR-based 3D lane detection model, LiLaDet, incorporating the spatial geometry learning of the LiDAR point cloud into Bird's Eye View (BEV) based lane identification.
arXiv Detail & Related papers (2023-09-24T09:58:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
We present an approach for automated and geo-referenced calibration of automotive radar sensors.
Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles.
Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner.
arXiv Detail & Related papers (2023-06-23T07:01:10Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
We propose a novel collaborative 3D object detection framework that consists of three components.
Experiment results and bandwidth usage analysis demonstrate that our approach can save communication and computation costs.
arXiv Detail & Related papers (2022-05-24T07:17:32Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods in both tasks.
We extend DS-Net to 4D panoptic LiDAR segmentation by the temporally unified instance clustering on aligned LiDAR frames.
arXiv Detail & Related papers (2022-03-14T15:25:42Z) - High-level camera-LiDAR fusion for 3D object detection with machine
learning [0.0]
This paper tackles the 3D object detection problem, which is of vital importance for applications such as autonomous driving.
It uses a Machine Learning pipeline on a combination of monocular camera and LiDAR data to detect vehicles in the surrounding 3D space of a moving platform.
Our results demonstrate an efficient and accurate inference on a validation set, achieving an overall accuracy of 87.1%.
arXiv Detail & Related papers (2021-05-24T01:57:34Z) - Depth Sensing Beyond LiDAR Range [84.19507822574568]
We propose a novel three-camera system that utilizes small field of view cameras.
Our system, along with our novel algorithm for computing metric depth, does not require full pre-calibration.
It can output dense depth maps with practically acceptable accuracy for scenes and objects at long distances.
arXiv Detail & Related papers (2020-04-07T00:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.