論文の概要: Test Set Sizing for the Ridge Regression
- arxiv url: http://arxiv.org/abs/2504.19231v1
- Date: Sun, 27 Apr 2025 13:17:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.190193
- Title: Test Set Sizing for the Ridge Regression
- Title(参考訳): リッジ回帰のためのテストセットサイズ
- Authors: Alexander Dubbs,
- Abstract要約: このような分割が、大規模なデータ制限下で機械学習モデルに対して数学的に計算されるのは、これが初めてである。
計算の目標は「積分」を最大化することで、訓練されたモデルにおける測定された誤差が理論上すべきことと可能な限り近いようにすることである。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We derive the ideal train/test split for the ridge regression to high accuracy in the limit that the number of training rows m becomes large. The split must depend on the ridge tuning parameter, alpha, but we find that the dependence is weak and can asymptotically be ignored; all parameters vanish except for m and the number of features, n. This is the first time that such a split is calculated mathematically for a machine learning model in the large data limit. The goal of the calculations is to maximize "integrity," so that the measured error in the trained model is as close as possible to what it theoretically should be. This paper's result for the ridge regression split matches prior art for the plain vanilla linear regression split to the first two terms asymptotically, and it appears that practically there is no difference.
- Abstract(参考訳): 訓練行数mが大きくなる限界において、リッジ回帰のための理想的な列車/試験分割を高精度に導出する。
分割はリッジチューニングパラメータ、アルファに依存する必要があるが、依存は弱で漸近的に無視できる。
このような分割が、大規模なデータ制限下で機械学習モデルに対して数学的に計算されるのは、これが初めてである。
計算の目標は「積分」を最大化することで、訓練されたモデルにおける測定された誤差が理論上すべきことと可能な限り近いようにすることである。
本論文の隆起回帰は, 基礎的なバニラ線形回帰の先行技術と一致し, 最初の2項は漸近的に分裂し, 実質的に差はないと考えられる。
関連論文リスト
- Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
無限次元線形回帰セットアップにおけるスケーリング法則の理論について検討する。
テストエラーの再現可能な部分は$Theta(-(a-1) + N-(a-1)/a)$であることを示す。
我々の理論は経験的ニューラルスケーリング法則と一致し、数値シミュレーションによって検証される。
論文 参考訳(メタデータ) (2024-06-12T17:53:29Z) - Regularization properties of adversarially-trained linear regression [5.7077257711082785]
最先端の機械学習モデルは、非常に小さな入力摂動に対して脆弱である。
敵の訓練は、それに対して効果的なアプローチである。
論文 参考訳(メタデータ) (2023-10-16T20:09:58Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
本稿では,ガウス的特徴を持つ線形回帰モデルの下で,過剰適合型メタラーニングの性能について検討する。
シングルタスク線形回帰には存在しない新しい興味深い性質が見つかる。
本分析は,各訓練課題における基礎的真理のノイズや多様性・変動が大きい場合には,良心過剰がより重要かつ容易に観察できることを示唆する。
論文 参考訳(メタデータ) (2023-04-09T20:36:13Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Dimension free ridge regression [10.434481202633458]
我々は、リッジ回帰のバイアスとばらつきの観点から、すなわちデータ上のリッジ回帰を再考し、等価なシーケンスモデルのバイアスとばらつきの観点から、リッジ回帰のバイアスとばらつきを考察する。
新しい応用として、定期的に変化するスペクトルを持つヒルベルト共変量に対して、完全に明示的で鋭い尾根回帰特性を得る。
論文 参考訳(メタデータ) (2022-10-16T16:01:05Z) - Surprises in adversarially-trained linear regression [12.33259114006129]
敵の訓練はこのような例に対して最も効果的なアプローチの1つである。
本稿では,線形回帰問題に対して,凸問題として逆行訓練を定式化できることを述べる。
十分に多くの特徴や十分小さな正規化パラメータに対して、学習されたモデルはトレーニングデータを完全に補間することを示す。
論文 参考訳(メタデータ) (2022-05-25T11:54:42Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - Benign overfitting in ridge regression [0.0]
過度にパラメータ化されたリッジ回帰に対する漸近的でない一般化境界を提供する。
最小あるいは負の正則化が小さい一般化誤差を得るのに十分であるかどうかを同定する。
論文 参考訳(メタデータ) (2020-09-29T20:00:31Z) - Additive interaction modelling using I-priors [0.571097144710995]
相互作用を持つモデルのパプリミティブな仕様を導入し、その利点を2つ挙げる。
スケールパラメータの数を減らし、相互作用のあるモデルの推定を容易にする。
論文 参考訳(メタデータ) (2020-07-30T22:52:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。