論文の概要: DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
- arxiv url: http://arxiv.org/abs/2504.19496v1
- Date: Mon, 28 Apr 2025 05:36:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.334621
- Title: DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
- Title(参考訳): DISCO:多物理認識予測のための進化演算子をDisCoverに学習する
- Authors: Rudy Morel, Jiequn Han, Edouard Oyallon,
- Abstract要約: DISCOは,大規模なハイパーネットワークを用いて短い軌道を処理し,より小さな演算子のネットワークのパラメータを生成するモデルである。
我々のフレームワークは、状態予測(すなわち、この演算子を進化させる)から動的推定(すなわち、短い軌道から進化演算子を分解する)を分離する。
- 参考スコア(独自算出の注目度): 11.041893960136164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of predicting the next state of a dynamical system governed by unknown temporal partial differential equations (PDEs) using only a short trajectory. While standard transformers provide a natural black-box solution to this task, the presence of a well-structured evolution operator in the data suggests a more tailored and efficient approach. Specifically, when the PDE is fully known, classical numerical solvers can evolve the state accurately with only a few parameters. Building on this observation, we introduce DISCO, a model that uses a large hypernetwork to process a short trajectory and generate the parameters of a much smaller operator network, which then predicts the next state through time integration. Our framework decouples dynamics estimation (i.e., DISCovering an evolution operator from a short trajectory) from state prediction (i.e., evolving this operator). Experiments show that pretraining our model on diverse physics datasets achieves state-of-the-art performance while requiring significantly fewer epochs. Moreover, it generalizes well and remains competitive when fine-tuned on downstream tasks.
- Abstract(参考訳): 本稿では, 時間的偏微分方程式(PDE)が支配する力学系の次の状態を, 短い軌道のみを用いて予測する問題に対処する。
標準変換器は、このタスクに自然なブラックボックスソリューションを提供するが、データによく構造化された進化演算子が存在することは、より調整された効率的なアプローチを示唆している。
具体的には、PDEが完全に知られている場合、古典的な数値解法は数パラメータだけで正確に状態を進化させることができる。
この観測に基づいて、我々は、大きなハイパーネットワークを用いて短い軌跡を処理し、より小さな演算子のネットワークのパラメータを生成し、次に次の状態を時間積分によって予測するモデルdisCOを紹介した。
我々のフレームワークは、状態予測(すなわち、この演算子を進化させる)から動的推定(すなわち、短い軌道から進化演算子を分解する)を分離する。
実験により、様々な物理データセットに事前学習することで、最先端の性能を実現し、エポックを著しく少なくすることを示した。
さらに、ダウンストリームタスクを微調整しても、うまく一般化し、競争力を維持します。
関連論文リスト
- Koopman Theory-Inspired Method for Learning Time Advancement Operators in Unstable Flame Front Evolution [0.2812395851874055]
本研究は,フレイムフロント不安定性に対するソリューション前進演算子を学習するために,クープマンインスパイアされたフーリエニューラル演算子(kFNO)と畳み込みニューラルニューラルネットワーク(kCNN)を紹介する。
データを高次元の潜在空間に変換することにより、これらのモデルは従来の手法と比較してより正確な多段階予測を実現する。
論文 参考訳(メタデータ) (2024-12-11T14:47:19Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をトレーニングデータセットを超える微細な時間スケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
また、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークも導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods [0.0]
本稿では、空間と時間の両方で連続的なニューラルダイナミクス演算子と呼ばれるデータ駆動モデリングフレームワークを提案する。
神経力学演算子の鍵となる特徴は、空間的および時間的離散化の両方に関して分解能不変性である。
提案手法は,ハイブリッド最適化方式により,より長期統計量の予測が可能であることを示す。
論文 参考訳(メタデータ) (2023-11-20T14:31:18Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
この研究は、動的モデリング能力を改善する偏微分方程式(PDE)に基づくフレームワークを提案する。
時間的離散化の反復的操作や特定のグリッドを必要とせずに連続的に処理できるニューラル演算子を提案する。
我々のフレームワークは、現実世界のアプリケーションに容易に適用可能な、ニューラルネットワークの継続的な表現のための新しい方法を開く。
論文 参考訳(メタデータ) (2023-02-02T03:47:52Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。