論文の概要: Koopman Theory-Inspired Method for Learning Time Advancement Operators in Unstable Flame Front Evolution
- arxiv url: http://arxiv.org/abs/2412.08426v1
- Date: Wed, 11 Dec 2024 14:47:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:41.805739
- Title: Koopman Theory-Inspired Method for Learning Time Advancement Operators in Unstable Flame Front Evolution
- Title(参考訳): クープマン理論に基づく不安定火炎前線進化における時間進行演算子学習法
- Authors: Rixin Yu, Marco Herbert, Markus Klein, Erdzan Hodzic,
- Abstract要約: 本研究は,フレイムフロント不安定性に対するソリューション前進演算子を学習するために,クープマンインスパイアされたフーリエニューラル演算子(kFNO)と畳み込みニューラルニューラルネットワーク(kCNN)を紹介する。
データを高次元の潜在空間に変換することにより、これらのモデルは従来の手法と比較してより正確な多段階予測を実現する。
- 参考スコア(独自算出の注目度): 0.2812395851874055
- License:
- Abstract: Predicting the evolution of complex systems governed by partial differential equations (PDEs) remains challenging, especially for nonlinear, chaotic behaviors. This study introduces Koopman-inspired Fourier Neural Operators (kFNO) and Convolutional Neural Networks (kCNN) to learn solution advancement operators for flame front instabilities. By transforming data into a high-dimensional latent space, these models achieve more accurate multi-step predictions compared to traditional methods. Benchmarking across one- and two-dimensional flame front scenarios demonstrates the proposed approaches' superior performance in short-term accuracy and long-term statistical reproduction, offering a promising framework for modeling complex dynamical systems.
- Abstract(参考訳): 偏微分方程式(PDE)によって支配される複雑なシステムの進化を予測することは、特に非線形でカオス的な振る舞いにおいて困難である。
本研究は,フレイムフロント不安定性に対するソリューション前進演算子を学習するために,クープマンインスパイアされたフーリエニューラル演算子(kFNO)と畳み込みニューラルニューラルネットワーク(kCNN)を紹介する。
データを高次元の潜在空間に変換することにより、これらのモデルは従来の手法と比較してより正確な多段階予測を実現する。
1次元および2次元の火炎前シナリオのベンチマークは、提案手法の短期精度と長期統計再生における優れた性能を示し、複雑な力学系をモデル化するための有望なフレームワークを提供する。
関連論文リスト
- Koopman-Equivariant Gaussian Processes [39.34668284375732]
線形時間不変応答を持つ力学系に対するガウス過程(GP)のファミリを提案する。
この線形性は、予測と表現の不確実性を的確に定量化することができる。
実験では、動的システムを学ぶためのカーネルベースの方法と比較して、オンパーで、しばしば予測性能が向上することを示した。
論文 参考訳(メタデータ) (2025-02-10T16:35:08Z) - On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions [0.0]
辞書学習による拡張動的モード分解(EDMD-DL)は、状態空間上の非線形離散時間フローマップのニューラルネットワーク表現と等価であることを示す。
それぞれのモデル構造と訓練手順の異なる側面を組み合わせることで,数種類のニューラル常微分方程式(ODE)とEDMD-DLを実装した。
ロレンツ系におけるカオス力学の数値実験と乱流せん断流れの9モードモデルを用いてこれらの手法を評価する。
論文 参考訳(メタデータ) (2024-11-20T00:18:46Z) - Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability [0.0]
本稿では,火炎不安定性のダイナミクスを解明するために,新しい作業者学習手法の適用について検討する。
トレーニングデータセットには幅広いパラメータ構成が含まれており、パラメトリックソリューション前進演算子を学習することができる。
その結果, 短期および長期の火炎進展を正確に予測する上で, これらの手法の有効性が示された。
論文 参考訳(メタデータ) (2024-05-11T18:31:13Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Koopman Kernel Regression [6.116741319526748]
クープマン作用素理論は線形時間不変(LTI)ODEによる予測のキャラクタリゼーションに有効なパラダイムであることを示す。
我々は、LTI力学系への変換のみにまたがる、普遍的なクープマン不変核再生ヒルベルト空間(RKHS)を導出する。
実験では、Koopman演算子やシーケンシャルデータ予測器と比較して予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2023-05-25T16:22:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
この研究は、動的モデリング能力を改善する偏微分方程式(PDE)に基づくフレームワークを提案する。
時間的離散化の反復的操作や特定のグリッドを必要とせずに連続的に処理できるニューラル演算子を提案する。
我々のフレームワークは、現実世界のアプリケーションに容易に適用可能な、ニューラルネットワークの継続的な表現のための新しい方法を開く。
論文 参考訳(メタデータ) (2023-02-02T03:47:52Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。