論文の概要: Deep Physics Prior for First Order Inverse Optimization
- arxiv url: http://arxiv.org/abs/2504.20278v1
- Date: Mon, 28 Apr 2025 21:48:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.68109
- Title: Deep Physics Prior for First Order Inverse Optimization
- Title(参考訳): 1次逆最適化に先立つ深部物理
- Authors: Haoyu Yang, Kamyar Azizzadenesheli, Haoxing Ren,
- Abstract要約: 逆設計最適化は、観測された解からシステムパラメータを推論することを目的としている。
多くの系における明示的な数学的表現の欠如はこの過程を複雑にしている。
生成AIやベイジアン最適化を含む主流のアプローチは、これらの課題に対処するが、制限がある。
本稿では,代用機械学習モデルを用いた一階勾配に基づく逆最適化を実現する新しい手法であるDeep Physics Prior (DPP)を紹介する。
- 参考スコア(独自算出の注目度): 17.536106369025717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse design optimization aims to infer system parameters from observed solutions, posing critical challenges across domains such as semiconductor manufacturing, structural engineering, materials science, and fluid dynamics. The lack of explicit mathematical representations in many systems complicates this process and makes the first order optimization impossible. Mainstream approaches, including generative AI and Bayesian optimization, address these challenges but have limitations. Generative AI is computationally expensive, while Bayesian optimization, relying on surrogate models, suffers from scalability, sensitivity to priors, and noise issues, often leading to suboptimal solutions. This paper introduces Deep Physics Prior (DPP), a novel method enabling first-order gradient-based inverse optimization with surrogate machine learning models. By leveraging pretrained auxiliary Neural Operators, DPP enforces prior distribution constraints to ensure robust and meaningful solutions. This approach is particularly effective when prior data and observation distributions are unknown.
- Abstract(参考訳): 逆設計最適化は、観測された溶液からシステムパラメータを推測することを目的としており、半導体製造、構造工学、材料科学、流体力学といった分野において重要な課題を提起している。
多くの系における明示的な数学的表現の欠如は、この過程を複雑にし、第一次最適化を不可能にする。
生成AIやベイジアン最適化を含む主流のアプローチは、これらの課題に対処するが、制限がある。
生成AIは計算コストがかかるが、ベイズ最適化はサロゲートモデルに依存しており、スケーラビリティ、事前の感度、ノイズ問題に悩まされており、しばしば最適以下のソリューションに繋がる。
本稿では,代用機械学習モデルを用いた一階勾配に基づく逆最適化を実現する新しい手法であるDeep Physics Prior (DPP)を紹介する。
事前訓練された補助的ニューラル演算子を活用することで、DPPは、堅牢で有意義なソリューションを保証するために、事前の分散制約を強制する。
この手法は、先行データと観測分布が不明な場合に特に有効である。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
制約付き最適化のための学習型反復解法を提案する。
解法を特定のパラメトリック最適化問題にカスタマイズすることで、非常に高速で正確な解を得ることができる。
最適性のKarush-Kuhn-Tucker条件に基づく新しい損失関数を導入し、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-09-12T14:17:23Z) - Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
トポロジ最適化(TO)は、その物質空間分布を予め定義された領域で設計し、制約の集合に従うことによって、構造の性能を最適化する原理的な数学的アプローチを提供する。
我々は,ガウス過程(GP)の枠組みに基づく新しいTO手法を開発し,その平均関数はディープニューラルネットワークを介してパラメータ化される。
本手法を商用ソフトウェアに実装した従来のTO手法に対して検証するため,ストークスフローにおける消散電力の最小化を含む4つの問題に対して評価を行った。
論文 参考訳(メタデータ) (2024-08-07T01:01:35Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Diffusion Generative Inverse Design [28.04683283070957]
逆設計(英: inverse design)とは、目的関数の入力を最適化し、目的の結果を導出する問題を指す。
学習グラフニューラルネットワーク(GNN)の最近の進歩は、シミュレーション力学の正確で効率的で微分可能な推定に利用することができる。
本稿では, 分散拡散モデルを用いて, 逆設計問題の解法を効率的に行う方法を示し, より効率的な粒子サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-05T08:32:07Z) - Sample-Efficient and Surrogate-Based Design Optimization of Underwater Vehicle Hulls [0.4543820534430522]
本稿では,BO-LCBアルゴリズムが最もサンプリング効率のよい最適化フレームワークであり,最適収束挙動を有することを示す。
また, DNN に基づく代理モデルでは, CFD シミュレーションと密に一致し, 平均絶対パーセンテージ誤差 (MAPE) が 1.85% であることを示す。
本稿では,サロゲートモデルを用いた設計最適化の2次高速化について述べる。
論文 参考訳(メタデータ) (2023-04-24T19:52:42Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。