PRISM: Projection-based Reward Integration for Scene-Aware Real-to-Sim-to-Real Transfer with Few Demonstrations
- URL: http://arxiv.org/abs/2504.20520v1
- Date: Tue, 29 Apr 2025 08:01:27 GMT
- Title: PRISM: Projection-based Reward Integration for Scene-Aware Real-to-Sim-to-Real Transfer with Few Demonstrations
- Authors: Haowen Sun, Han Wang, Chengzhong Ma, Shaolong Zhang, Jiawei Ye, Xingyu Chen, Xuguang Lan,
- Abstract summary: Reinforcement learning can autonomously explore to obtain robust behaviors.<n>Training RL agents through direct interaction with the real world is often impractical and unsafe.<n>We propose an integrated real-to-sim-to-real pipeline that constructs simulation environments based on expert demonstrations.
- Score: 24.77819842428131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from few demonstrations to develop policies robust to variations in robot initial positions and object poses is a problem of significant practical interest in robotics. Compared to imitation learning, which often struggles to generalize from limited samples, reinforcement learning (RL) can autonomously explore to obtain robust behaviors. Training RL agents through direct interaction with the real world is often impractical and unsafe, while building simulation environments requires extensive manual effort, such as designing scenes and crafting task-specific reward functions. To address these challenges, we propose an integrated real-to-sim-to-real pipeline that constructs simulation environments based on expert demonstrations by identifying scene objects from images and retrieving their corresponding 3D models from existing libraries. We introduce a projection-based reward model for RL policy training that is supervised by a vision-language model (VLM) using human-guided object projection relationships as prompts, with the policy further fine-tuned using expert demonstrations. In general, our work focuses on the construction of simulation environments and RL-based policy training, ultimately enabling the deployment of reliable robotic control policies in real-world scenarios.
Related papers
- VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion [25.440573256776133]
This paper presents a Real-to-Sim-to-Real framework that generates and physically interactive "digital twin" simulation environments for visual navigation and locomotion learning.
arXiv Detail & Related papers (2025-02-03T17:15:05Z) - URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images [39.0780707100513]
We present an integrated end-to-end pipeline that generates simulation scenes complete with articulated kinematic and dynamic structures from real-world images.
In doing so, our work provides both a pipeline for large-scale generation of simulation environments and an integrated system for training robust robotic control policies.
arXiv Detail & Related papers (2024-05-19T20:01:29Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
arXiv Detail & Related papers (2024-05-09T17:30:16Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Affordance Learning from Play for Sample-Efficient Policy Learning [30.701546777177555]
We use a self-supervised visual affordance model from human teleoperated play data to enable efficient policy learning and motion planning.
We combine model-based planning with model-free deep reinforcement learning to learn policies that favor the same object regions favored by people.
We find that our policies train 4x faster than the baselines and generalize better to novel objects because our visual affordance model can anticipate their affordance regions.
arXiv Detail & Related papers (2022-03-01T11:00:35Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
This paper introduces a self-supervised loss that encourages sim and real alignment both at the feature and action-prediction levels.
We achieve 80% success across ten seen and unseen scenes using only 16.2 hours of teleoperated demonstrations in sim and real.
arXiv Detail & Related papers (2022-02-03T21:43:06Z) - An in-depth experimental study of sensor usage and visual reasoning of
robots navigating in real environments [20.105395754497202]
We study the performance and reasoning capacities of real physical agents, trained in simulation and deployed to two different physical environments.
We show, that for the PointGoal task, an agent pre-trained on wide variety of tasks and fine-tuned on a simulated version of the target environment can reach competitive performance without modelling any sim2real transfer.
arXiv Detail & Related papers (2021-11-29T16:27:29Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.