Selecting the Right LLM for eGov Explanations
- URL: http://arxiv.org/abs/2504.21032v1
- Date: Sun, 27 Apr 2025 08:09:12 GMT
- Title: Selecting the Right LLM for eGov Explanations
- Authors: Lior Limonad, Fabiana Fournier, Hadar Mulian, George Manias, Spiros Borotis, Danai Kyrkou,
- Abstract summary: The perceived quality of explanations accompanying e-government services is key to gaining trust in these institutions.<n>Recent advances in generative AI, and concretely in Large Language Models (LLMs) allow the automation of such content articulations.<n>We provide a systematic approach for the comparative analysis of the perceived quality of explanations generated by various LLMs.
- Score: 1.8307218564634469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The perceived quality of the explanations accompanying e-government services is key to gaining trust in these institutions, consequently amplifying further usage of these services. Recent advances in generative AI, and concretely in Large Language Models (LLMs) allow the automation of such content articulations, eliciting explanations' interpretability and fidelity, and more generally, adapting content to various audiences. However, selecting the right LLM type for this has become a non-trivial task for e-government service providers. In this work, we adapted a previously developed scale to assist with this selection, providing a systematic approach for the comparative analysis of the perceived quality of explanations generated by various LLMs. We further demonstrated its applicability through the tax-return process, using it as an exemplar use case that could benefit from employing an LLM to generate explanations about tax refund decisions. This was attained through a user study with 128 survey respondents who were asked to rate different versions of LLM-generated explanations about tax refund decisions, providing a methodological basis for selecting the most appropriate LLM. Recognizing the practical challenges of conducting such a survey, we also began exploring the automation of this process by attempting to replicate human feedback using a selection of cutting-edge predictive techniques.
Related papers
- LLMs Can Generate a Better Answer by Aggregating Their Own Responses [83.69632759174405]
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems.<n>We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks.<n>We propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities.
arXiv Detail & Related papers (2025-03-06T05:25:43Z) - LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.<n>We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.<n>We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVA is a framework designed to identify high-quality data that aligns well with the learned knowledge to reduce hallucinations.
It includes Internal Consistency Probing (ICP) and Semantic Equivalence Identification (SEI) to measure how familiar the LLM is with instruction data.
To ensure the quality of selected samples, we introduce an expert-aligned reward model, considering characteristics beyond just familiarity.
arXiv Detail & Related papers (2025-02-11T08:05:56Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
Large Language Models (LLMs) provide a cost-effective and efficient alternative to human annotation.<n>This paper introduces the SILICON" (Systematic Inference with LLMs for Information Classification and Notation) workflow.<n>The workflow integrates established principles of human annotation with systematic prompt optimization and model selection.
arXiv Detail & Related papers (2024-12-19T02:21:41Z) - Local Explanations and Self-Explanations for Assessing Faithfulness in black-box LLMs [1.03590082373586]
This paper introduces a novel task to assess the faithfulness of large language models (LLMs) using local perturbations and self-explanations.
We propose a new efficient alternative explainability technique, inspired by the commonly used leave-one-out approach.
arXiv Detail & Related papers (2024-09-18T10:16:45Z) - Leveraging LLM Reasoning Enhances Personalized Recommender Systems [25.765908301183188]
We show that the application of Large Language Models (LLMs) reasoning in recommendation systems (RecSys) presents a distinct challenge.
Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves.
arXiv Detail & Related papers (2024-07-22T20:18:50Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - A Survey on Large Language Models for Personalized and Explainable
Recommendations [0.3108011671896571]
This survey aims to analyze how Recommender Systems can benefit from Large Language Models.
We describe major challenges in Personalized Explanation Generating(PEG) tasks, which are cold-start problems, unfairness and bias problems in RS.
arXiv Detail & Related papers (2023-11-21T04:14:09Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.