論文の概要: Quantum Approaches to the Quadratic Assignment Problem
- arxiv url: http://arxiv.org/abs/2505.00182v1
- Date: Wed, 30 Apr 2025 20:57:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.174603
- Title: Quantum Approaches to the Quadratic Assignment Problem
- Title(参考訳): 二次割当問題に対する量子的アプローチ
- Authors: Nathan Daly, Thomas Krauss, Julia Shapiro,
- Abstract要約: Quadratic Assignment Problem (QAP) は、1957年にクープマンとベックマンによって導入されたNPハードの基本最適化問題である。
本稿では,Rydberg配列を用いてQAPの有効かつ最適な解を求めるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.7450893625541581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quadratic Assignment Problem (QAP) is an NP-hard fundamental combinatorial optimization problem introduced by Koopmans and Beckmann in 1957. The problem is to assign $n$ facilities to $n$ different locations with the goal of minimizing the cost of the total distances between facilities weighted by the corresponding flows. We initiate the study of using Rydberg arrays to find optimal solutions to the QAP and provide a complementing circuit theory to facilitate an easy representation of other hard problems. We provide an algorithm for finding valid and optimal solutions to the QAP using Rydberg arrays.
- Abstract(参考訳): Quadratic Assignment Problem (QAP) は、1957年にクープマンとベックマンによって導入されたNPハードの基本組合せ最適化問題である。
問題は、対応するフローによって重み付けされた施設間の全距離のコストを最小化することを目的として、n$の施設をn$の異なる場所に割り当てることである。
我々は、Rydberg配列を用いてQAPの最適解を見つけ出し、他の難題の表現を容易にするための補完回路理論を提供する。
本稿では,Rydberg配列を用いてQAPの有効かつ最適な解を求めるアルゴリズムを提案する。
関連論文リスト
- A Multilevel Approach For Solving Large-Scale QUBO Problems With Noisy Hybrid Quantum Approximate Optimization [3.3493770627144004]
既存の量子処理ユニット(QPU)がマルチレベル戦略においてサブソルバとしてどのように機能するかを実験的に検証する。
完全連結な 82$-qubit Sherrington-Kirkpatrick グラフに対して 10$ の近似解を求める。
量子最適化の結果は古典学と比較して解の質に関して競争力がある。
論文 参考訳(メタデータ) (2024-08-14T20:06:32Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Learning Solution-Aware Transformers for Efficiently Solving Quadratic Assignment Problem [27.33966993065248]
本研究は,2次割当て問題(QAP)を効率的に解くための学習ベースソリューションに焦点を当てる。
QAPに関する現在の研究は、限られた規模と非効率性に悩まされている。
そこで本研究では,QAPの学習と改善のカテゴリにおける第1の解法を提案する。
論文 参考訳(メタデータ) (2024-06-14T10:15:03Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Solving the Quadratic Assignment Problem using Deep Reinforcement
Learning [0.8158530638728501]
Quadratic Assignment Problem (QAP) はNP-hard問題であり、特に解決が困難であることが証明されている。
30以上のサイズのQAPインスタンスを正確に解決する方法は知られていない。
深部強化学習を用いたQAPのオリジナルのクープマン・ベックマン定式化の解法を提案する。
論文 参考訳(メタデータ) (2023-10-02T19:55:15Z) - Variational Amplitude Amplification for Solving QUBO Problems [0.0]
本研究は、キュービット重畳状態に適したQUBO問題に焦点をあてる。
我々は、QUBOをコストオラクルの演算として符号化する回路設計を、標準Grover拡散演算子$U_textrms$と組み合わせると、最適および近似最適解に対応する状態の測定確率が高くなることを示す。
論文 参考訳(メタデータ) (2023-01-31T14:33:40Z) - Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms [42.29248343585333]
余分なスラック変数を必要としない代替手法を提案する。
我々は,旅行セールスマン問題,ビン包装問題,ナプサック問題に対するアプローチを評価した。
この新しいアプローチは、リソースの少ない不等式制約の問題を解決するために使用できる。
論文 参考訳(メタデータ) (2022-11-25T06:05:18Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Two-Stage Stochastic Optimization via Primal-Dual Decomposition and Deep
Unrolling [86.85697555068168]
2段階のアルゴリズム最適化は、様々な工学や科学的応用において重要な役割を果たす。
特に長期変数と短期変数が制約の中で結合されている場合、アルゴリズムは効率的ではない。
PDD-SSCAが既存のソリューションよりも優れたパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-05-05T03:36:00Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
問題に対処するための新しいアルゴリズム - Momentum- Single-timescale Approximation (MSTSA) を提案する。
MSTSAでは、低いレベルのサブプロブレムに対する不正確な解決策のため、反復でエラーを制御することができます。
論文 参考訳(メタデータ) (2021-02-15T07:10:33Z) - Larger Sparse Quadratic Assignment Problem Optimization Using Quantum
Annealing and a Bit-Flip Heuristic Algorithm [0.4125187280299248]
線形制約は、量子アニールで表現できる問題のサイズを減らす。
オーゼキ法により得られた解に対して,後処理ビットフリップアルゴリズムを適用し,スパースQAPの解法を提案する。
D-Wave Advantage を用いて,D-Wave Advantage を用いた QAP の高精度化に成功した。
論文 参考訳(メタデータ) (2020-12-18T09:48:28Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。