Faster Quantum Algorithm for Multiple Observables Estimation in Fermionic Problems
- URL: http://arxiv.org/abs/2505.00697v1
- Date: Thu, 01 May 2025 17:57:19 GMT
- Title: Faster Quantum Algorithm for Multiple Observables Estimation in Fermionic Problems
- Authors: Yuki Koizumi, Kaito Wada, Wataru Mizukami, Nobuyuki Yoshioka,
- Abstract summary: We propose two variants which enable us to estimate the collective properties of fermionic systems using the smallest cost among existing quantum algorithms.<n>We show that our proposal offers a quadratic speedup compared with prior QGE algorithms in the task of fermionic partial tomography for systems with limited particle numbers.
- Score: 0.19999259391104385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving quantum advantage in efficiently estimating collective properties of quantum many-body systems remains a fundamental goal in quantum computing. While the quantum gradient estimation (QGE) algorithm has been shown to achieve doubly quantum enhancement in the precision and the number of observables, it remains unclear whether one benefits in practical applications. In this work, we present a generalized framework of adaptive QGE algorithm, and further propose two variants which enable us to estimate the collective properties of fermionic systems using the smallest cost among existing quantum algorithms. The first method utilizes the symmetry inherent in the target state, and the second method enables estimation in a single-shot manner using the parallel scheme. We show that our proposal offers a quadratic speedup compared with prior QGE algorithms in the task of fermionic partial tomography for systems with limited particle numbers. Furthermore, we provide the numerical demonstration that, for a problem of estimating fermionic 2-RDMs, our proposals improve the number of queries to the target state preparation oracle by a factor of 100 for the nitrogenase FeMo cofactor and by a factor of 500 for Fermi-Hubbard model of 100 sites.
Related papers
- Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Early Fault-Tolerant Quantum Algorithms in Practice: Application to Ground-State Energy Estimation [39.20075231137991]
We investigate the feasibility of early fault-tolerant quantum algorithms focusing on ground-state energy estimation problems.<n> scaling these methods to larger system sizes reveals three key challenges: the smoothness of the CDF for large supports, the lack of tight lower bounds on the overlap with the true ground state, and the difficulty of preparing high-quality initial states.
arXiv Detail & Related papers (2024-05-06T18:00:03Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver [17.975555487972166]
Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages.
The roadblock to developing quantum algorithms with the measurement-based quantum computation scheme is resource cost.
We propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA)
arXiv Detail & Related papers (2023-07-19T08:07:53Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Error Mitigation for Deep Quantum Optimization Circuits by Leveraging
Problem Symmetries [2.517903855792476]
We introduce an application-specific approach for mitigating the errors in QAOA evolution by leveraging the symmetries present in the classical objective function to be optimized.
Specifically, the QAOA state is projected into the symmetry-restricted subspace, with projection being performed either at the end of the circuit or throughout the evolution.
Our approach improves the fidelity of the QAOA state, thereby increasing both the accuracy of the sample estimate of the QAOA objective and the probability of sampling the binary string corresponding to that objective value.
arXiv Detail & Related papers (2021-06-08T14:40:48Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.