論文の概要: A Survey on Large Language Model based Human-Agent Systems
- arxiv url: http://arxiv.org/abs/2505.00753v1
- Date: Thu, 01 May 2025 08:29:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.774801
- Title: A Survey on Large Language Model based Human-Agent Systems
- Title(参考訳): 大規模言語モデルに基づくヒューマンエージェントシステムに関する調査
- Authors: Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai Chen, Chunyu Miao, Hoang Nguyen, Yue Zhou, Weizhi Zhang, Liancheng Fang, Langzhou He, Yangning Li, Yuwei Cao, Dongyuan Li, Renhe Jiang, Philip S. Yu,
- Abstract要約: 大規模言語モデル(LLM)は、完全に自律的なエージェントの構築への関心が高まっている。
LLM-HASは、システムの性能、信頼性、安全性を高めるために、人為的な情報、フィードバック、制御をエージェントシステムに組み込む。
本稿は, LLM-HASの総合的かつ構造化された最初の調査である。
- 参考スコア(独自算出の注目度): 33.503701128291226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-System-Papers.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、完全に自律的なエージェントの構築への関心が高まりつつある。
しかしながら、完全に自律的なLLMベースのエージェントは、幻覚による信頼性の制限、複雑なタスクの処理の困難、そして、現実のアプリケーションにおけるその実現可能性と信頼性を制限する、かなりの安全性と倫理的リスクなど、依然として重大な課題に直面している。
これらの制限を克服するために、LLMベースのヒューマンエージェントシステム(LLM-HAS)は、システム性能、信頼性、安全性を高めるために、人為的な情報、フィードバック、制御をエージェントシステムに組み込む。
本稿は LLM-HAS に関する総合的かつ構造化された最初の調査である。
基本的な概念を明確にし、環境とプロファイリング、人間のフィードバック、インタラクションタイプ、オーケストレーションとコミュニケーションなど、これらのシステムを構成するコアコンポーネントを体系的に提示し、新興アプリケーションを探究し、ユニークな課題と機会について論じる。
現在の知識を集約し、構造化された概要を提供することで、この急速に発展する学際分野におけるさらなる研究と革新を促進することを目指している。
ペーパーリストとリソースはhttps://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-System-Papersで入手できる。
関連論文リスト
- Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems [11.522282769053817]
大規模言語モデル(LLM)は、最近、推論、計画、意思決定において顕著な能力を示した。
研究者はLLMをマルチエージェントシステムに組み込んで、単一エージェント設定の範囲を超えてタスクに取り組むようになった。
この調査はさらなるイノベーションの触媒として機能し、より堅牢でスケーラブルでインテリジェントなマルチエージェントシステムを促進する。
論文 参考訳(メタデータ) (2025-02-20T07:18:34Z) - Large Language Models for Multi-Robot Systems: A Survey [9.31855372655603]
マルチロボットシステム(MRS)は、調整、スケーラビリティ、現実の適応性など、ユニークな課題を提起する。
このサーベイは、MSSへのLLM(Large Language Models)統合に関する最初の包括的な調査を提供する。
家庭用ロボティクス、建設、構成制御、目標追跡、ロボットゲームなど、さまざまな分野における重要な応用に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-06T06:52:14Z) - Position: Towards a Responsible LLM-empowered Multi-Agent Systems [22.905804138387854]
Agent AIとLarge Language Model-powered Multi-Agent Systems (LLM-MAS)の台頭は、責任と信頼性のあるシステム操作の必要性を浮き彫りにした。
LLMエージェントは固有の予測不能を示し、出力の不確実性は複雑になり、システムの安定性を脅かす。
これらのリスクに対処するためには、アクティブな動的モデレーションを備えた人間中心の設計アプローチが不可欠である。
論文 参考訳(メタデータ) (2025-02-03T16:04:30Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSimは、大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するために設計された生成シミュレーションプラットフォームである。
最強のLSMエージェントを除く全てのエージェントは、GovSimの持続的均衡を達成することができず、生存率は54%以下である。
道徳的思考の理論である「大学化」に基づく推論を活用するエージェントは、持続可能性を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-04-25T15:59:16Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。