Distributed Quantum Circuit Cutting for Hybrid Quantum-Classical High-Performance Computing
- URL: http://arxiv.org/abs/2505.01184v2
- Date: Mon, 05 May 2025 08:43:29 GMT
- Title: Distributed Quantum Circuit Cutting for Hybrid Quantum-Classical High-Performance Computing
- Authors: Mar Tejedor, Berta Casas, Javier Conejero, Alba Cervera-Lierta, Rosa M. Badia,
- Abstract summary: We introduce Qdislib, a distributed and flexible library for quantum circuit cutting.<n>Qdislib seamlessly integrates with hybrid quantum-classical high-performance computing systems.<n>We present a proof of concept demonstrating how Qdislib enables the distributed execution of quantum circuits across heterogeneous computing resources.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most quantum computers today are constrained by hardware limitations, particularly the number of available qubits, causing significant challenges for executing large-scale quantum algorithms. Circuit cutting has emerged as a key technique to overcome these limitations by decomposing large quantum circuits into smaller subcircuits that can be executed independently and later reconstructed. In this work, we introduce Qdislib, a distributed and flexible library for quantum circuit cutting, designed to seamlessly integrate with hybrid quantum-classical high-performance computing (HPC) systems. Qdislib employs a graph-based representation of quantum circuits to enable efficient partitioning, manipulation and execution, supporting both wire cutting and gate cutting techniques. The library is compatible with multiple quantum computing libraries, including Qiskit and Qibo, and leverages distributed computing frameworks to execute subcircuits across CPUs, GPUs, and quantum processing units (QPUs) in a fully parallelized manner. We present a proof of concept demonstrating how Qdislib enables the distributed execution of quantum circuits across heterogeneous computing resources, showcasing its potential for scalable quantum-classical workflows.
Related papers
- TensorQC: Towards Scalable Distributed Quantum Computing via Tensor Networks [16.609478015737707]
A quantum processing unit (QPU) must contain a large number of high quality qubits to produce accurate results.<n>Most scientific and industry classical computation workloads happen in parallel on distributed systems.<n>This paper demonstrates running benchmarks that are otherwise intractable for a standalone QPU and prior circuit cutting techniques.
arXiv Detail & Related papers (2025-02-05T18:42:07Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Cutting Quantum Circuits to Run on Quantum and Classical Platforms [25.18520278107402]
CutQC is a scalable hybrid computing approach that distributes a large quantum circuit onto quantum (QPU) and classical platforms ( CPU or GPU) for co-processing.
It achieves much higher quantum circuit evaluation fidelity than the large NISQ devices achieve in real-system runs.
arXiv Detail & Related papers (2022-05-12T02:09:38Z) - Divide and Conquer for Combinatorial Optimization and Distributed
Quantum Computation [3.8221353389253676]
We introduce the Quantum Divide and Conquer Algorithm (QDCA), a hybrid variational approach to mapping large optimization problems onto distributed quantum architectures.
This is achieved through the combined use of graph partitioning and quantum circuit cutting.
We simulate the QDCA on instances of the Maximum Independent Set problem and find that it is able to outperform similar classical algorithms.
arXiv Detail & Related papers (2021-07-15T18:00:32Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers.
CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices.
In real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers.
arXiv Detail & Related papers (2020-12-03T23:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.