論文の概要: Learning and Transferring Physical Models through Derivatives
- arxiv url: http://arxiv.org/abs/2505.01391v2
- Date: Sat, 04 Oct 2025 12:59:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 14:28:09.746823
- Title: Learning and Transferring Physical Models through Derivatives
- Title(参考訳): 導出物による物理モデルの学習と伝達
- Authors: Alessandro Trenta, Andrea Cossu, Davide Bacciu,
- Abstract要約: 本稿では,その部分微分を学習することで,物理系をモデル化する教師ありアプローチであるデリバティブ学習(DERL)を提案する。
また、DerLを利用して物理モデルを段階的に構築し、あらかじめ訓練されたモデルから学生に効果的に知識を伝達する蒸留プロトコルを設計する。
- 参考スコア(独自算出の注目度): 61.227256589854726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Derivative Learning (DERL), a supervised approach that models physical systems by learning their partial derivatives. We also leverage DERL to build physical models incrementally, by designing a distillation protocol that effectively transfers knowledge from a pre-trained model to a student one. We provide theoretical guarantees that DERL can learn the true physical system, being consistent with the underlying physical laws, even when using empirical derivatives. DERL outperforms state-of-the-art methods in generalizing an ODE to unseen initial conditions and a parametric PDE to unseen parameters. We also design a method based on DERL to transfer physical knowledge across models by extending them to new portions of the physical domain and a new range of PDE parameters. We believe this is the first attempt at building physical models incrementally in multiple stages.
- Abstract(参考訳): 本稿では,その部分微分を学習することで,物理系をモデル化する教師ありアプローチであるデリバティブ学習(DERL)を提案する。
また、DerLを利用して物理モデルを段階的に構築し、あらかじめ訓練されたモデルから学生に効果的に知識を伝達する蒸留プロトコルを設計する。
我々は、経験的微分を用いても、DERLが真の物理系を学習できることを理論的に保証し、基礎となる物理法則と整合性を持たせる。
DERLは、未確認の初期条件にODEを一般化する最先端の手法と、未確認パラメータにパラメトリックPDEを上回ります。
また、DerLに基づく物理知識を物理領域の新たな部分に拡張し、PDEパラメータを新しい範囲に拡張することで、モデル間で物理知識を伝達する手法も設計する。
これは、物理モデルを段階的に複数の段階でインクリメンタルに構築する最初の試みであると考えています。
関連論文リスト
- Physics-Guided Foundation Model for Scientific Discovery: An Application to Aquatic Science [13.28811382673697]
事前学習したMLモデルと物理モデルを組み合わせたtextittextbfPhysics-textbfGuided textbfFoundation textbfModel(textbfPGFM)を提案する。
実世界の湖沼における水温と溶存酸素動態のモデル化における本手法の有効性を実証する。
論文 参考訳(メタデータ) (2025-02-10T00:48:10Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - ICODE: Modeling Dynamical Systems with Extrinsic Input Information [14.521146920900316]
本稿では,モデルの学習過程に,正確なリアルタイム入力情報を組み込んだEmphInput Concomitant Neural ODE(ICODE)を紹介する。
いくつかの代表的実動力学の実験を通して本手法を検証する。
この研究は、明示的な外部入力情報で物理的システムを理解するための貴重なニューラルネットワークODEモデルのクラスを提供する。
論文 参考訳(メタデータ) (2024-11-21T07:57:59Z) - Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
物理インフォームド・機械学習は、デジタル双生児におけるモデリングとシミュレーションの一般的なアプローチとして登場した。
本稿では,新しい物理符号化残差ニューラルネットワークアーキテクチャに基づく汎用的アプローチを提案する。
本手法は、物理モデルとフィードフォワード学習ブロックとから、微分可能な物理ブロックを実装する数学的演算子を統合する。
論文 参考訳(メタデータ) (2024-11-18T11:58:20Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Model-Based Reinforcement Learning for Physical Systems Without Velocity
and Acceleration Measurements [19.060544153434428]
ガウス過程回帰(GPR)に基づく強化学習(RL)アルゴリズムのための微分自由モデル学習フレームワークを提案する。
多くのメカニカルシステムでは、計測器によって位置のみを測定することができる。
2つの実プラットフォームで実施されたテストでは,提案モデルと組み合わせた状態定義により,推定性能が向上することが示された。
論文 参考訳(メタデータ) (2020-02-25T01:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。