論文の概要: Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models
- arxiv url: http://arxiv.org/abs/2411.11497v2
- Date: Mon, 07 Jul 2025 16:30:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 17:51:39.499646
- Title: Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models
- Title(参考訳): ディジタル双極子モデルのための残差ニューラルネットワークアーキテクチャにおける物理符号化ブロック
- Authors: Muhammad Saad Zia, Ashiq Anjum, Lu Liu, Anthony Conway, Anasol Pena Rios,
- Abstract要約: 物理インフォームド・機械学習は、デジタル双生児におけるモデリングとシミュレーションの一般的なアプローチとして登場した。
本稿では,新しい物理符号化残差ニューラルネットワークアーキテクチャに基づく汎用的アプローチを提案する。
本手法は、物理モデルとフィードフォワード学習ブロックとから、微分可能な物理ブロックを実装する数学的演算子を統合する。
- 参考スコア(独自算出の注目度): 2.8720819157502344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics Informed Machine Learning has emerged as a popular approach for modeling and simulation in digital twins, enabling the generation of accurate models of processes and behaviors in real-world systems. However, existing methods either rely on simple loss regularizations that offer limited physics integration or employ highly specialized architectures that are difficult to generalize across diverse physical systems. This paper presents a generic approach based on a novel physics-encoded residual neural network (PERNN) architecture that seamlessly combines data-driven and physics-based analytical models to overcome these limitations. Our method integrates differentiable physics blocks-implementing mathematical operators from physics-based models with feed-forward learning blocks, while intermediate residual blocks ensure stable gradient flow during training. Consequently, the model naturally adheres to the underlying physical principles even when prior physics knowledge is incomplete, thereby improving generalizability with low data requirements and reduced model complexity. We investigate our approach in two application domains. The first is a steering model for autonomous vehicles in a simulation environment, and the second is a digital twin for climate modeling using an ordinary differential equation (ODE)-based model of Net Ecosystem Exchange (NEE) to enable gap-filling in flux tower data. In both cases, our method outperforms conventional neural network approaches as well as state-of-the-art Physics Informed Machine Learning methods.
- Abstract(参考訳): Physics Informed Machine Learningは、デジタルツインのモデリングとシミュレーションの一般的なアプローチとして登場し、現実世界のシステムにおけるプロセスと振る舞いの正確なモデルの生成を可能にしている。
しかし、既存の手法は、物理学の統合が限られている単純な損失正規化に依存するか、様々な物理系をまたいだ一般化が難しい高度に特殊なアーキテクチャを採用するかのいずれかである。
本稿では,これらの制約を克服するために,データ駆動と物理に基づく解析モデルをシームレスに結合した新しい物理符号化残差ニューラルネットワーク(PERNN)アーキテクチャに基づく汎用的アプローチを提案する。
本手法は,物理モデルとフィードフォワード学習ブロックを併用した物理モデルから,物理ブロックを実装する数学的演算子を統合し,中間的残差ブロックはトレーニング中に安定な勾配流を保証する。
その結果、事前の物理知識が不完全である場合でも、モデルは基礎となる物理原理に自然に固執し、低データ要求による一般化性を改善し、モデルの複雑さを低減させる。
2つのアプリケーション領域における我々のアプローチについて検討する。
1つはシミュレーション環境での自動運転車のステアリングモデルであり、2つ目は、フラックスタワーデータのギャップ埋めを可能にするために、NEE(Net Ecosystem Exchange)の常微分方程式(ODE)モデルを用いた気候モデリングのためのデジタルツインである。
どちらの場合も、従来のニューラルネットワーク手法や最先端の物理インフォームド機械学習手法よりも優れています。
関連論文リスト
- Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
二周期領域上で定義される物理問題であるTaylor-Green vortexは、標準物理インフォームドニューラルネットワークと我々のモデルの両方の性能を評価するベンチマークとして使用される。
その結果,標準物理インフォームドニューラルネットワークは解の正確な予測に失敗し,初期条件を時間的に返却するだけでなく,物理の時間的変化をうまく捉えていることがわかった。
論文 参考訳(メタデータ) (2024-10-05T10:32:51Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
本稿では,大理石を円形迷路の中心まで航行する作業について述べる。
実システムと対話する数分以内に,複雑な環境で大理石を動かすことを学習するモデルを提案する。
論文 参考訳(メタデータ) (2020-11-14T02:03:08Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。