Effective Inference-Free Retrieval for Learned Sparse Representations
- URL: http://arxiv.org/abs/2505.01452v1
- Date: Wed, 30 Apr 2025 09:10:46 GMT
- Title: Effective Inference-Free Retrieval for Learned Sparse Representations
- Authors: Franco Maria Nardini, Thong Nguyen, Cosimo Rulli, Rossano Venturini, Andrew Yates,
- Abstract summary: Learned Sparse Retrieval (LSR) is an effective IR approach that exploits pre-trained language models for encoding text into a learned bag of words.<n>Recently, new efficient -- inverted index-based -- retrieval engines have been proposed, leading to a natural question: has the role of regularization changed in training LSR models?<n>We show that regularization can be relaxed to produce more effective LSR encoders.
- Score: 19.54810957623511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned Sparse Retrieval (LSR) is an effective IR approach that exploits pre-trained language models for encoding text into a learned bag of words. Several efforts in the literature have shown that sparsity is key to enabling a good trade-off between the efficiency and effectiveness of the query processor. To induce the right degree of sparsity, researchers typically use regularization techniques when training LSR models. Recently, new efficient -- inverted index-based -- retrieval engines have been proposed, leading to a natural question: has the role of regularization changed in training LSR models? In this paper, we conduct an extended evaluation of regularization approaches for LSR where we discuss their effectiveness, efficiency, and out-of-domain generalization capabilities. We first show that regularization can be relaxed to produce more effective LSR encoders. We also show that query encoding is now the bottleneck limiting the overall query processor performance. To remove this bottleneck, we advance the state-of-the-art of inference-free LSR by proposing Learned Inference-free Retrieval (Li-LSR). At training time, Li-LSR learns a score for each token, casting the query encoding step into a seamless table lookup. Our approach yields state-of-the-art effectiveness for both in-domain and out-of-domain evaluation, surpassing Splade-v3-Doc by 1 point of mRR@10 on MS MARCO and 1.8 points of nDCG@10 on BEIR.
Related papers
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - OAT-Rephrase: Optimization-Aware Training Data Rephrasing for Zeroth-Order LLM Fine-Tuning [25.76983801886268]
This paper introduces OAT-Rephrase, an Optimization-Aware Training data rephrasing strategy.<n>We show that OAT-Rephrase consistently improves MeZO fine-tuning performance.<n>Our findings suggest that optimization-aware rephrasing serves as a reusable and low-overhead enhancement for zeroth-order tuning regimes.
arXiv Detail & Related papers (2025-06-10T02:53:04Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.<n>Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
arXiv Detail & Related papers (2025-03-08T03:14:26Z) - An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRST is a novel approach that integrates a learning-to-rank objective and leveraging the logits of only the first generated token.
We extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains.
Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality.
arXiv Detail & Related papers (2024-11-08T12:08:17Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models [0.0]
Low-Rank Adaptation (LoRA) has emerged as a promising method to mitigate these issues.
OLoRA significantly accelerates the convergence of LLM training.
OLoRA exhibits improved performance compared to standard LoRA across a variety of language modeling tasks.
arXiv Detail & Related papers (2024-06-03T20:37:27Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Blending Imitation and Reinforcement Learning for Robust Policy
Improvement [16.588397203235296]
Imitation learning (IL) utilizes oracles to improve sample efficiency.
RPI draws on the strengths of IL, using oracle queries to facilitate exploration.
RPI is capable of learning from and improving upon a diverse set of black-box oracles.
arXiv Detail & Related papers (2023-10-03T01:55:54Z) - An Efficiency Study for SPLADE Models [5.725475501578801]
In this paper, we focus on improving the efficiency of the SPLADE model.
We propose several techniques including L1 regularization for queries, a separation of document/ encoders, a FLOPS-regularized middle-training, and the use of faster query encoders.
arXiv Detail & Related papers (2022-07-08T11:42:05Z) - LaPraDoR: Unsupervised Pretrained Dense Retriever for Zero-Shot Text
Retrieval [55.097573036580066]
Experimental results show that LaPraDoR achieves state-of-the-art performance compared with supervised dense retrieval models.
Compared to re-ranking, our lexicon-enhanced approach can be run in milliseconds (22.5x faster) while achieving superior performance.
arXiv Detail & Related papers (2022-03-11T18:53:12Z) - Towards Understanding Label Smoothing [36.54164997035046]
Label smoothing regularization (LSR) has a great success in deep neural networks by training algorithms.
We show that an appropriate LSR can help to speed up convergence by reducing the variance.
We propose a simple yet effective strategy, namely Two-Stage LAbel smoothing algorithm (TSLA)
arXiv Detail & Related papers (2020-06-20T20:36:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.