Exploring Traffic Simulation and Cybersecurity Strategies Using Large Language Models
- URL: http://arxiv.org/abs/2506.16699v1
- Date: Fri, 20 Jun 2025 02:41:23 GMT
- Title: Exploring Traffic Simulation and Cybersecurity Strategies Using Large Language Models
- Authors: Lu Gao, Yongxin Liu, Hongyun Chen, Dahai Liu, Yunpeng Zhang, Jingran Sun,
- Abstract summary: This study presents a novel multi-agent framework to enhance traffic simulation and cybersecurity testing.<n>The framework automates the creation of traffic scenarios, the design of cyberattack strategies, and the development of defense mechanisms.<n>Results show a 10.2 percent increase in travel time during an attack, which is reduced by 3.3 percent with the defense strategy.
- Score: 5.757331432762268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligent Transportation Systems (ITS) are increasingly vulnerable to sophisticated cyberattacks due to their complex, interconnected nature. Ensuring the cybersecurity of these systems is paramount to maintaining road safety and minimizing traffic disruptions. This study presents a novel multi-agent framework leveraging Large Language Models (LLMs) to enhance traffic simulation and cybersecurity testing. The framework automates the creation of traffic scenarios, the design of cyberattack strategies, and the development of defense mechanisms. A case study demonstrates the framework's ability to simulate a cyberattack targeting connected vehicle broadcasts, evaluate its impact, and implement a defense mechanism that significantly mitigates traffic delays. Results show a 10.2 percent increase in travel time during an attack, which is reduced by 3.3 percent with the defense strategy. This research highlights the potential of LLM-driven multi-agent systems in advancing transportation cybersecurity and offers a scalable approach for future research in traffic simulation and cyber defense.
Related papers
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus [45.24207460381396]
This paper presents a novel Intrusion Detection System (IDS) designed for the Controller Area Network (CAN) environment.<n>A RISC-V-based CAN receiver is simulated using the gem5 simulator, processing CAN frame payloads with AES-128 encryption as FreeRTOS tasks.<n>Results indicate that this approach could significantly improve CAN security and address emerging challenges in automotive cybersecurity.
arXiv Detail & Related papers (2025-07-19T20:09:52Z) - CyFence: Securing Cyber-Physical Controllers via Trusted Execution Environment [45.86654759872101]
Cyber-physical systems (CPSs) have experienced a significant technological evolution and increased connectivity, at the cost of greater exposure to cyber-attacks.<n>We propose CyFence, a novel architecture that improves the resilience of closed-loop control systems against cyber-attacks by adding a semantic check.<n>We evaluate CyFence considering a real-world application, consisting of an active braking digital controller, demonstrating that it can mitigate different types of attacks with a negligible overhead.
arXiv Detail & Related papers (2025-06-12T12:22:45Z) - Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses [55.70043755630583]
vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities.<n>We propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling.<n>We develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions.
arXiv Detail & Related papers (2025-05-19T05:04:48Z) - Explainable Machine Learning for Cyberattack Identification from Traffic Flows [5.834276858232939]
We simulate cyberattacks in a semi-realistic environment, using a traffic network to analyze disruption patterns.<n>We develop a deep learning-based anomaly detection system, demonstrating that Longest Stop Duration and Total Jam Distance are key indicators of compromised signals.<n>This work enhances AI-driven traffic security, improving both detection accuracy and trustworthiness in smart transportation systems.
arXiv Detail & Related papers (2025-05-02T17:34:14Z) - Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey [25.73174314007904]
Traditional cybersecurity approaches are struggling to adapt to the rapidly evolving nature of modern cyberattacks.<n>The emergence of Large Language Model (LLM) provides an innovative solution to cope with the increasingly severe cyber threats.<n> exploring how to effectively use LLM to defend against cyberattacks has become a hot topic in the current research field.
arXiv Detail & Related papers (2025-04-22T06:28:08Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.<n>The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.<n>It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.<n>We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.<n>Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.