A Multimodal Framework for Explainable Evaluation of Soft Skills in Educational Environments
- URL: http://arxiv.org/abs/2505.01794v1
- Date: Sat, 03 May 2025 11:54:35 GMT
- Title: A Multimodal Framework for Explainable Evaluation of Soft Skills in Educational Environments
- Authors: Jared D. T. Guerrero-Sosa, Francisco P. Romero, Víctor Hugo Menéndez-Domínguez, Jesus Serrano-Guerrero, Andres Montoro-Montarroso, Jose A. Olivas,
- Abstract summary: This paper presents a fuzzy logic approach that employs a Granular Linguistic Model of Phenomena integrated with multimodal analysis to evaluate soft skills in undergraduate students.<n> Experiments were conducted with undergraduate students using a developed tool that assesses soft skills such as decision-making, communication, and creativity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving educational landscape, the unbiased assessment of soft skills is a significant challenge, particularly in higher education. This paper presents a fuzzy logic approach that employs a Granular Linguistic Model of Phenomena integrated with multimodal analysis to evaluate soft skills in undergraduate students. By leveraging computational perceptions, this approach enables a structured breakdown of complex soft skill expressions, capturing nuanced behaviours with high granularity and addressing their inherent uncertainties, thereby enhancing interpretability and reliability. Experiments were conducted with undergraduate students using a developed tool that assesses soft skills such as decision-making, communication, and creativity. This tool identifies and quantifies subtle aspects of human interaction, such as facial expressions and gesture recognition. The findings reveal that the framework effectively consolidates multiple data inputs to produce meaningful and consistent assessments of soft skills, showing that integrating multiple modalities into the evaluation process significantly improves the quality of soft skills scores, making the assessment work transparent and understandable to educational stakeholders.
Related papers
- Teaching at Scale: Leveraging AI to Evaluate and Elevate Engineering Education [3.557803321422781]
This article presents a scalable, AI-supported framework for qualitative student feedback using large language models.<n>The system employs hierarchical summarization, anonymization, and exception handling to extract actionable themes from open-ended comments.<n>We report on its successful deployment across a large college of engineering.
arXiv Detail & Related papers (2025-08-01T20:27:40Z) - Structured Relevance Assessment for Robust Retrieval-Augmented Language Models [0.0]
We introduce a framework for structured relevance assessment that enhances RALM robustness.<n>Our approach employs a multi-dimensional scoring system that considers both semantic matching and source reliability.<n>Preliminary evaluations demonstrate significant reductions in hallucination rates and improved transparency in reasoning processes.
arXiv Detail & Related papers (2025-07-28T19:20:04Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - Towards an intelligent assessment system for evaluating the development of algorithmic thinking skills: An exploratory study in Swiss compulsory schools [0.0]
This study aims to develop a comprehensive framework for large-scale assessment of CT skills, particularly focusing on AT, the ability to design algorithms.<n>We first developed a competence model capturing the situated and developmental nature of CT, guiding the design of activities tailored to cognitive abilities, age, and context.<n>We developed an activity for large-scale assessment of AT skills, offered in two variants: one based on non-digital artefacts (unplugged) and manual expert assessment, and the other based on digital artefacts (virtual) and automatic assessment.
arXiv Detail & Related papers (2025-03-27T13:34:36Z) - Evaluating and Advancing Multimodal Large Language Models in Ability Lens [30.083110119139793]
We introduce textbfAbilityLens, a unified benchmark designed to evaluate MLLMs across six key perception abilities.
We identify the strengths and weaknesses of current models, highlighting stability patterns and revealing a notable performance gap between open-source and closed-source models.
We also design a simple ability-specific model merging method that combines the best ability checkpoint from early training stages, effectively mitigating performance decline due to ability conflict.
arXiv Detail & Related papers (2024-11-22T04:41:20Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
arXiv Detail & Related papers (2024-07-04T14:36:49Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Translating Expert Intuition into Quantifiable Features: Encode Investigator Domain Knowledge via LLM for Enhanced Predictive Analytics [2.330270848695646]
This paper explores the potential of Large Language Models to bridge the gap by systematically converting investigator-derived insights into quantifiable, actionable features.
We present a framework that leverages LLMs' natural language understanding capabilities to encode these red flags into a structured feature set that can be readily integrated into existing predictive models.
The results indicate significant improvements in risk assessment and decision-making accuracy, highlighting the value of blending human experiential knowledge with advanced machine learning techniques.
arXiv Detail & Related papers (2024-05-11T13:23:43Z) - Supporting Experts with a Multimodal Machine-Learning-Based Tool for
Human Behavior Analysis of Conversational Videos [40.30407535831779]
We developed Providence, a visual-programming-based tool based on design considerations derived from a formative study with experts.
It enables experts to combine various machine learning algorithms to capture human behavioral cues without writing code.
Our study showed its preferable usability and satisfactory output with less cognitive load imposed in accomplishing scene search tasks of conversations.
arXiv Detail & Related papers (2024-02-17T00:27:04Z) - A Hierarchy-based Analysis Approach for Blended Learning: A Case Study
with Chinese Students [12.533646830917213]
This paper proposes a hierarchy-based evaluation approach for blended learning evaluation.
The results show that cognitive engagement and emotional engagement play a more important role in blended learning evaluation.
arXiv Detail & Related papers (2023-09-19T00:09:00Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
In this paper, we study the efficacy of large language models as multi-dimensional evaluators using in-context learning.
Our experiments show that in-context learning-based evaluators are competitive with learned evaluation frameworks for the task of text summarization.
We then analyze the effects of factors such as the selection and number of in-context examples on performance.
arXiv Detail & Related papers (2023-06-01T23:27:49Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
This paper presents an approach to deriving a learner model directly from an assessment rubric.
We illustrate how the approach can be applied to automatize the human assessment of an activity developed for testing computational thinking skills.
arXiv Detail & Related papers (2022-09-07T10:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.