Interference in complex canonical variables is not quantum
- URL: http://arxiv.org/abs/2505.01920v1
- Date: Sat, 03 May 2025 20:55:20 GMT
- Title: Interference in complex canonical variables is not quantum
- Authors: Chiara Marletto, Vlatko Vedral,
- Abstract summary: We represent the quantum interference of a single qubit embodied by a photon in the Mach-Zehnder interferometer.<n>Although all operations on a single qubit can be formally expressed, we show that the resulting system is still not a proper qubit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formally represent the quantum interference of a single qubit embodied by a photon in the Mach-Zehnder interferometer using the classical Hamiltonian framework but with complex canonical variables. Although all operations on a single qubit can be formally expressed using the complex classical Hamiltonian dynamics, we show that the resulting system is still not a proper qubit. The reason is that it is not capable of getting entangled to another bona fide qubit and hence it does not have the information-processing capacity of a fully-fledged quantum system. This simple example powerfully illustrates the failure of all hybrid quantum-classical models in accounting for the full range of behaviour of even a single quantum bit.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Simulating quantum chaos without chaos [1.7942265700058988]
We introduce a novel class of quantum Hamiltonians that fundamentally challenges the conventional understanding of quantum chaos.
Our ensemble is computationally indistinguishable from the Gaussian unitary ensemble (GUE) of strongly-interacting Hamiltonians.
This stark contrast between efficient computational indistinguishability and traditional chaos indicators calls into question fundamental assumptions about the nature of quantum chaos.
arXiv Detail & Related papers (2024-10-23T18:01:50Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Quantum irreversibility of quasistatic protocols for finite-size
quantized systems [2.4155294046665046]
Quantum mechanically, a driving process is expected to be reversible in the quasistatic limit, also known as the adiabatic theorem.
A paradigm for demonstrating the signatures of chaos in quantum irreversibility is a sweep process whose objective is to transfer condensed bosons from a source orbital.
We show that such a protocol is dominated by an interplay of adiabatic-shuttling and chaos-assisted depletion processes.
arXiv Detail & Related papers (2022-12-11T14:16:15Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum solvability of a nonlinear $\delta$-type mass profile system:
Coupling constant quantization [1.3907460999698045]
We consider a general ordered position-dependent mass Hamiltonian in which the ordering parameters of the mass term are treated as arbitrary.
We observe that the quantum system admits bounded solutions but importantly the coupling parameter of the system gets quantized.
arXiv Detail & Related papers (2022-07-29T08:21:09Z) - Visualized Wave Mechanics by Coupled Macroscopic Pendula: Classical
Analogue to Driven Quantum Bits [0.0]
We show that it is possible to reconstruct the coherent dynamics of a quantum bit (qubit) using a classical model system.
As a proof of principle, we demonstrate full control of our one-to-one analogue to a qubit by realizing Rabi oscillations, Landau-Zener transitions and Landau-Zener-St"uckelberg-Majorana interferometry.
arXiv Detail & Related papers (2022-07-19T14:29:29Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.