Leveraging LLM Agents and Digital Twins for Fault Handling in Process Plants
- URL: http://arxiv.org/abs/2505.02076v1
- Date: Sun, 04 May 2025 12:02:21 GMT
- Title: Leveraging LLM Agents and Digital Twins for Fault Handling in Process Plants
- Authors: Milapji Singh Gill, Javal Vyas, Artan Markaj, Felix Gehlhoff, Mehmet Mercangöz,
- Abstract summary: We propose a framework that integrates Large Language Model (LLM) agents with a Digital Twin environment.<n>The Digital Twin acts as a structured repository of plant-specific engineering knowledge for agent prompting.<n>The proposed framework is capable not only of autonomously controlling the mixing module, but also of generating effective corrective actions.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in Automation and Artificial Intelligence continue to enhance the autonomy of process plants in handling various operational scenarios. However, certain tasks, such as fault handling, remain challenging, as they rely heavily on human expertise. This highlights the need for systematic, knowledge-based methods. To address this gap, we propose a methodological framework that integrates Large Language Model (LLM) agents with a Digital Twin environment. The LLM agents continuously interpret system states and initiate control actions, including responses to unexpected faults, with the goal of returning the system to normal operation. In this context, the Digital Twin acts both as a structured repository of plant-specific engineering knowledge for agent prompting and as a simulation platform for the systematic validation and verification of the generated corrective control actions. The evaluation using a mixing module of a process plant demonstrates that the proposed framework is capable not only of autonomously controlling the mixing module, but also of generating effective corrective actions to mitigate a pipe clogging with only a few reprompts.
Related papers
- Autonomous Control Leveraging LLMs: An Agentic Framework for Next-Generation Industrial Automation [0.0]
We introduce a unified agentic framework that leverages large language models (LLMs) for both discrete fault-recovery planning and continuous process control.<n>Our results demonstrate that, with structured feedback and modular agents, LLMs can unify high-level symbolic planningand low-level continuous control.
arXiv Detail & Related papers (2025-07-03T11:20:22Z) - Control-Optimized Deep Reinforcement Learning for Artificially Intelligent Autonomous Systems [8.766411351797885]
Deep reinforcement learning (DRL) has become a powerful tool for complex decision-making in machine learning and AI.<n>Traditional methods often assume perfect action execution, overlooking the uncertainties and deviations between an agent's selected actions and the actual system response.<n>This work advances AI by developing a novel control-optimized DRL framework that explicitly models and compensates for action execution mismatches.
arXiv Detail & Related papers (2025-06-30T21:25:52Z) - State and Memory is All You Need for Robust and Reliable AI Agents [29.259008600842517]
Large language models (LLMs) have enabled powerful advances in natural language understanding and generation.<n>Yet their application to complex, real-world scientific remain limited by challenges in memory, planning, and tool integration.<n>Here, we introduce SciBORG, a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution.
arXiv Detail & Related papers (2025-06-30T02:02:35Z) - Agent-based Condition Monitoring Assistance with Multimodal Industrial Database Retrieval Augmented Generation [3.8451399765175016]
Condition monitoring (CM) plays a crucial role in ensuring reliability and efficiency in the process industry.<n>This work integrates large language model (LLM)-based reasoning agents with CM to address analyst and industry needs.<n>We propose MindRAG, a modular framework combining multimodal retrieval-augmented generation (RAG) with novel vector store structures designed specifically for CM data.
arXiv Detail & Related papers (2025-06-10T21:04:18Z) - Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing [0.0]
CIPHER is a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control.<n>It integrates a process expert, a regression model enabling quantitative characterization of system states.<n>It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions.
arXiv Detail & Related papers (2025-06-10T05:37:33Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.<n> operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.<n>A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
arXiv Detail & Related papers (2025-04-20T16:57:45Z) - Construction and Evaluation of LLM-based agents for Semi-Autonomous penetration testing [0.0]
High-performance large language models (LLMs) have advanced across various domains.<n>In highly specialized fields such as cybersecurity, full autonomy remains a challenge.<n>We propose a system that semi-autonomously executes complex cybersecurity by employing multiple LLMs modules.
arXiv Detail & Related papers (2025-02-21T15:02:39Z) - Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation [58.799397354312596]
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks.<n>Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation.<n>In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges.
arXiv Detail & Related papers (2025-02-18T03:20:50Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - OSM: Leveraging Model Checking for Observing Dynamic 1 behaviors in
Aspect-Oriented Applications [0.0]
observe-based statistical model-checking (OSM) framework devised to craft executable formal models directly from foundational system code.
This ensures the unyielding performance of electronic health record systems amidst shifting preconditions.
arXiv Detail & Related papers (2024-03-03T00:03:34Z) - Discovering Decision Manifolds to Assure Trusted Autonomous Systems [0.0]
We propose an optimization-based search technique for capturing the range of correct and incorrect responses a system could exhibit.
This manifold provides a more detailed understanding of system reliability than traditional testing or Monte Carlo simulations.
In this proof-of-concept, we apply our method to a software-in-the-loop evaluation of an autonomous vehicle.
arXiv Detail & Related papers (2024-02-12T16:55:58Z) - Learning to Generate All Feasible Actions [4.333208181196761]
We introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective.
This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model.
We demonstrate the agent's proficiency in generating actions across disconnected feasible action sets.
arXiv Detail & Related papers (2023-01-26T23:15:51Z) - Modular Transfer Learning with Transition Mismatch Compensation for
Excessive Disturbance Rejection [29.01654847752415]
We propose a transfer learning framework that adapts a control policy for excessive disturbance rejection of an underwater robot.
A modular network of learning policies is applied, composed of a Generalized Control Policy (GCP) and an Online Disturbance Identification Model (ODI)
arXiv Detail & Related papers (2020-07-29T07:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.