Lane-Wise Highway Anomaly Detection
- URL: http://arxiv.org/abs/2505.02613v1
- Date: Mon, 05 May 2025 12:32:23 GMT
- Title: Lane-Wise Highway Anomaly Detection
- Authors: Mei Qiu, William Lorenz Reindl, Yaobin Chen, Stanley Chien, Shu Hu,
- Abstract summary: This paper proposes a scalable and interpretable framework for lane-wise highway traffic anomaly detection.<n>Unlike traditional sensor-dependent methods, our approach uses AI-powered vision models to extract lane-specific features.<n>Our framework outperforms state-of-the-art methods in precision, recall, and F1-score.
- Score: 8.086502588472783
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes a scalable and interpretable framework for lane-wise highway traffic anomaly detection, leveraging multi-modal time series data extracted from surveillance cameras. Unlike traditional sensor-dependent methods, our approach uses AI-powered vision models to extract lane-specific features, including vehicle count, occupancy, and truck percentage, without relying on costly hardware or complex road modeling. We introduce a novel dataset containing 73,139 lane-wise samples, annotated with four classes of expert-validated anomalies: three traffic-related anomalies (lane blockage and recovery, foreign object intrusion, and sustained congestion) and one sensor-related anomaly (camera angle shift). Our multi-branch detection system integrates deep learning, rule-based logic, and machine learning to improve robustness and precision. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods in precision, recall, and F1-score, providing a cost-effective and scalable solution for real-world intelligent transportation systems.
Related papers
- Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods [51.28632782308621]
We focus on overtake detection using Controller Area Network (CAN) bus data collected from five in-service trucks provided by the Volvo Group.<n>We evaluate three common classifiers for vehicle manoeuvre detection, Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM)<n>Our pertruck analysis also reveals that classification accuracy, especially for overtakes, depends on the amount of training data per vehicle.
arXiv Detail & Related papers (2025-07-01T09:20:41Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
Two convolutional neural networks (CNNs) based on high-level feature descriptors are proposed to detect blind-spot collisions for heavy vehicles.
A fusion approach is proposed to integrate two pre-trained networks for extracting high level features for blind-spot vehicle detection.
The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods.
arXiv Detail & Related papers (2022-08-17T11:10:37Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Dual-Modality Vehicle Anomaly Detection via Bilateral Trajectory Tracing [42.03797195839054]
We propose a dual-modality modularized methodology for the robust detection of abnormal vehicles.
For the vehicle detection and tracking module, we adopted YOLOv5 and multi-scale tracking to localize the anomalies.
Experiments conducted on the Track 4 testset of the NVIDIA 2021 AI City Challenge yielded a result of 0.9302 F1-Score and 3.4039 root mean square error (RMSE)
arXiv Detail & Related papers (2021-06-09T12:04:25Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - An Efficient Approach for Anomaly Detection in Traffic Videos [30.83924581439373]
We propose an efficient approach for a video anomaly detection system which is capable of running at the edge devices.
The proposed approach comprises a pre-processing module that detects changes in the scene and removes the corrupted frames.
We also propose a sequential change detection algorithm that can quickly adapt to a new scene and detect changes in the similarity statistic.
arXiv Detail & Related papers (2021-04-20T04:43:18Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.