論文の概要: Latent Adaptive Planner for Dynamic Manipulation
- arxiv url: http://arxiv.org/abs/2505.03077v1
- Date: Tue, 06 May 2025 00:09:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.149756
- Title: Latent Adaptive Planner for Dynamic Manipulation
- Title(参考訳): 動的マニピュレーションのための潜在適応プランナ
- Authors: Donghun Noh, Deqian Kong, Minglu Zhao, Andrew Lizarraga, Jianwen Xie, Ying Nian Wu, Dennis Hong,
- Abstract要約: Latent Adaptive Planner (LAP) は動的非包括的操作タスクのための新しいアプローチである。
LAPは、人間のデモビデオから効果的に学んだ潜在空間推論として計画を定式化している。
- 参考スコア(独自算出の注目度): 44.885020943751464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents Latent Adaptive Planner (LAP), a novel approach for dynamic nonprehensile manipulation tasks that formulates planning as latent space inference, effectively learned from human demonstration videos. Our method addresses key challenges in visuomotor policy learning through a principled variational replanning framework that maintains temporal consistency while efficiently adapting to environmental changes. LAP employs Bayesian updating in latent space to incrementally refine plans as new observations become available, striking an optimal balance between computational efficiency and real-time adaptability. We bridge the embodiment gap between humans and robots through model-based proportional mapping that regenerates accurate kinematic-dynamic joint states and object positions from human demonstrations. Experimental evaluations across multiple complex manipulation benchmarks demonstrate that LAP achieves state-of-the-art performance, outperforming existing approaches in success rate, trajectory smoothness, and energy efficiency, particularly in dynamic adaptation scenarios. Our approach enables robots to perform complex interactions with human-like adaptability while providing an expandable framework applicable to diverse robotic platforms using the same human demonstration videos.
- Abstract(参考訳): 本稿では、遅延空間推論として計画を定式化する動的非包括的操作タスクのための新しいアプローチであるLatent Adaptive Planner(LAP)について、人間のデモビデオから効果的に学習する。
本手法は, 環境変化に適応しつつ時間的整合性を維持しつつ, 時間的整合性を維持する原則的変動計画フレームワークを通じて, ビジュモータ政策学習における重要な課題に対処する。
LAPは、新しい観測が利用可能になると計画が徐々に洗練され、計算効率とリアルタイム適応性の最適なバランスがとれるように、ベイジアン更新を潜時空間で採用している。
我々は,人間とロボットのエンボディメントギャップをモデルに基づく比例マッピングによってブリッジし,人間の実演から正確な運動力学的関節状態と物体位置を再現する。
複数の複雑な操作ベンチマークによる実験的評価により、LAPは、特に動的適応シナリオにおいて、成功率、軌道の滑らか性、エネルギー効率において既存のアプローチよりも優れた、最先端のパフォーマンスを達成することが示された。
提案手法では,ロボットが人間に似た適応性を持つ複雑なインタラクションを行うと同時に,人間と同じデモビデオを用いて,多様なロボットプラットフォームに適用可能な拡張可能なフレームワークを提供する。
関連論文リスト
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
ロボット工学における継続的な学習は、変化する環境やタスクに常に適応できるシステムを求める。
本稿では,オンラインロボット力学モデルアライメントのためのフローマッチングを利用した生成フレームワークを提案する。
ロボットは,不整合モデルで探索するのではなく,行動自体を変換することで,より効率的に情報収集を行う。
論文 参考訳(メタデータ) (2025-04-25T16:26:15Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
この研究は、長期水平予測、エラー蓄積、およびsim-to-real転送の課題に対処することで、モデルに基づく強化学習を前進させる。
スケーラブルでロバストなフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
論文 参考訳(メタデータ) (2024-11-29T07:53:05Z) - Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators [5.483662156126757]
モデル予測制御(MPC)のための物理に基づく力学モデルに漸進的に適応する非包括的操作のための新しいアプローチを提案する。
シミュレーションおよび実ロボットを用いた物体押出実験における少数ショット適応手法の評価を行った。
論文 参考訳(メタデータ) (2024-09-20T05:24:25Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
HARPS(Human Assisted Robotic Planning and Sensing)フレームワークは、ロボットチームにおけるアクティブなセマンティックセンシングと計画のためのフレームワークである。
このアプローチにより、人間が不規則にモデル構造を強制し、不確実な環境で意味的なソフトデータの範囲を拡張することができる。
大規模部分構造環境におけるUAV対応ターゲット探索アプリケーションのシミュレーションは、時間と信念状態の推定において著しく改善されている。
論文 参考訳(メタデータ) (2021-10-20T00:41:57Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-02T08:43:36Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
本稿では,進化的強化学習法(MAPPER)を用いた分散部分観測可能なマルチエージェントパス計画を提案する。
我々は、長距離ナビゲーションタスクを、グローバルプランナーの指導の下で、より簡単なサブタスクに分解する。
提案手法は,イメージベース表現を用いて動的障害物の挙動をモデル化し,均質性の仮定を伴わない混合動的環境におけるポリシーを訓練する。
論文 参考訳(メタデータ) (2020-07-30T20:14:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。