論文の概要: Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients
- arxiv url: http://arxiv.org/abs/2505.03432v1
- Date: Tue, 06 May 2025 11:17:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.348288
- Title: Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients
- Title(参考訳): 半凸性および不連続勾配下におけるスコアベース生成モデルのワッサーシュタイン収束
- Authors: Stefano Bruno, Sotirios Sabanis,
- Abstract要約: スコアベース生成モデル(SGM)は、ガウス雑音で摂動させ、学習された拡散過程を通じてデノベーションすることで、データ分布を近似する。
我々は、潜在的に不連続な勾配を持つ半1次を対象とするSGMに対して、最初の非同相なワッサーシュタイン-2収束保証を確立する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score-based Generative Models (SGMs) approximate a data distribution by perturbing it with Gaussian noise and subsequently denoising it via a learned reverse diffusion process. These models excel at modeling complex data distributions and generating diverse samples, achieving state-of-the-art performance across domains such as computer vision, audio generation, reinforcement learning, and computational biology. Despite their empirical success, existing Wasserstein-2 convergence analysis typically assume strong regularity conditions-such as smoothness or strict log-concavity of the data distribution-that are rarely satisfied in practice. In this work, we establish the first non-asymptotic Wasserstein-2 convergence guarantees for SGMs targeting semiconvex distributions with potentially discontinuous gradients. Our upper bounds are explicit and sharp in key parameters, achieving optimal dependence of $O(\sqrt{d})$ on the data dimension $d$ and convergence rate of order one. The framework accommodates a wide class of practically relevant distributions, including symmetric modified half-normal distributions, Gaussian mixtures, double-well potentials, and elastic net potentials. By leveraging semiconvexity without requiring smoothness assumptions on the potential such as differentiability, our results substantially broaden the theoretical foundations of SGMs, bridging the gap between empirical success and rigorous guarantees in non-smooth, complex data regimes.
- Abstract(参考訳): スコアベース生成モデル(SGM)は、ガウス雑音で摂動させ、学習された逆拡散過程を通じてデノベーションすることで、データ分布を近似する。
これらのモデルは、複雑なデータ分散をモデル化し、多様なサンプルを生成し、コンピュータビジョン、オーディオ生成、強化学習、計算生物学などの領域で最先端のパフォーマンスを達成する。
実験的な成功にもかかわらず、既存のワッサーシュタイン2収束解析は、通常、スムーズ性や厳密なデータ分布の対数共空性のような強い規則性条件を仮定する。
本研究では,不連続勾配を持つ半凸分布を対象とするSGMに対して,非漸近的なワッサーシュタイン-2収束保証を初めて確立する。
我々の上界はキーパラメータにおいて明示的で鋭く、データ次元$d$とオーダー1の収束率に対する$O(\sqrt{d})$の最適依存を達成する。
このフレームワークは、対称修正半正規分布、ガウス混合、二重井戸ポテンシャル、弾性ネットポテンシャルなど、幅広い種類の実用的な分布に対応している。
微分可能性などのポテンシャルについて滑らかな仮定を必要とせず,半凸性を活用することにより,SGMの理論的基盤を大きく広げ,経験的成功と非滑らかで複雑なデータ構造における厳密な保証のギャップを埋めることができた。
関連論文リスト
- Minimax Optimality of the Probability Flow ODE for Diffusion Models [8.15094483029656]
この研究は、決定論的ODEベースのサンプリングのための最初のエンドツーエンド理論フレームワークを開発する。
L2$のスコア誤差と関連する平均ジャコビアン誤差の両方を同時に制御するスムーズな正規化スコア推定器を提案する。
得られたサンプルは全変動距離, 変調対数係数において最小値が得られることを示す。
論文 参考訳(メタデータ) (2025-03-12T17:51:29Z) - Beyond Log-Concavity and Score Regularity: Improved Convergence Bounds for Score-Based Generative Models in W2-distance [0.0]
スコアベース生成モデル(SGM)における収束解析のための新しい枠組みを提案する。
データ分布の弱い対数共振器は時間とともに対数共振器へと進化することを示す。
本手法は, スコア関数とその正則性に対する厳密な正則性条件の必要性を回避するものである。
論文 参考訳(メタデータ) (2025-01-04T14:33:27Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
一般のスコアミスマッチ拡散サンプリング器に対する明示的な次元依存性を持つ最初の性能保証を示す。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction
for Uncertainty Quantification [4.728311759896569]
本稿では,機械学習における不確実性を定量化するために,分布予測の新しい,簡潔かつ効果的な手法を提案する。
これは回帰タスクにおいて$mathbbP(mathbfy|mathbfX=x)$の適応的に柔軟な分布予測を組み込む。
UCIデータセットからの大規模な回帰タスクでは、EMQが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2022-11-26T11:45:32Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
我々は、Scoreベースの生成モデルの背後にあるコアメカニックに対する最初の収束保証を証明した。
以前の作品と比較すると、時間的に指数関数的に増加するエラーや、次元の呪いに苦しむエラーは発生しない。
予測器・相関器はどちらの部分のみを使用するよりも収束性が高いことを示す。
論文 参考訳(メタデータ) (2022-06-13T14:57:35Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。