Procedural Memory Is Not All You Need: Bridging Cognitive Gaps in LLM-Based Agents
- URL: http://arxiv.org/abs/2505.03434v1
- Date: Tue, 06 May 2025 11:18:34 GMT
- Title: Procedural Memory Is Not All You Need: Bridging Cognitive Gaps in LLM-Based Agents
- Authors: Schaun Wheeler, Olivier Jeunen,
- Abstract summary: Large Language Models (LLMs) represent a landmark achievement in Artificial Intelligence (AI)<n>This paper argues that LLMs are fundamentally constrained by their reliance on procedural memory.<n>By adopting a modular architecture that decouples cognitive functions, we can bridge the gap between narrow procedural expertise and the adaptive intelligence required for real-world problem-solving.
- Score: 3.376269351435396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) represent a landmark achievement in Artificial Intelligence (AI), demonstrating unprecedented proficiency in procedural tasks such as text generation, code completion, and conversational coherence. These capabilities stem from their architecture, which mirrors human procedural memory -- the brain's ability to automate repetitive, pattern-driven tasks through practice. However, as LLMs are increasingly deployed in real-world applications, it becomes impossible to ignore their limitations operating in complex, unpredictable environments. This paper argues that LLMs, while transformative, are fundamentally constrained by their reliance on procedural memory. To create agents capable of navigating ``wicked'' learning environments -- where rules shift, feedback is ambiguous, and novelty is the norm -- we must augment LLMs with semantic memory and associative learning systems. By adopting a modular architecture that decouples these cognitive functions, we can bridge the gap between narrow procedural expertise and the adaptive intelligence required for real-world problem-solving.
Related papers
- Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - Think, Reflect, Create: Metacognitive Learning for Zero-Shot Robotic Planning with LLMs [3.0067862210362284]
Large language models (LLMs) have shown great potential across various domains.<n>We present a framework that integrates metacognitive learning into LLM-powered multi-robot collaboration.<n>We propose a more challenging robotic benchmark task and evaluate our framework on the existing benchmark and the novel task.
arXiv Detail & Related papers (2025-05-20T20:51:18Z) - Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models [45.05285463251872]
We introduce a novel learning paradigm -- Modular Machine Learning (MML) -- as an essential approach toward new-generation large language models (LLMs)<n>MML decomposes the complex structure of LLMs into three interdependent components: modular representation, modular model, and modular reasoning.<n>We present a feasible implementation of MML-based LLMs via leveraging advanced techniques such as disentangled representation learning, neural architecture search and neuro-symbolic learning.
arXiv Detail & Related papers (2025-04-28T17:42:02Z) - MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation [24.200547898713126]
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data.<n>Their real-world deployment is hindered by substantial computational and storage demands.<n>We propose a Mixture-of-Layers Vision-Language-Action model (MoLe) architecture for dynamic LLM layer activation.
arXiv Detail & Related papers (2025-03-26T10:05:38Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Composite Learning Units: Generalized Learning Beyond Parameter Updates to Transform LLMs into Adaptive Reasoners [0.0]
We introduce Composite Learning Units (CLUs) designed to transform reasoners into learners capable of continuous learning.
CLUs are built on an architecture that allows a reasoning model to maintain and evolve a dynamic knowledge repository.
We demonstrate CLUs' effectiveness through a cryptographic reasoning task, where they continuously evolve their understanding through feedback to uncover hidden transformation rules.
arXiv Detail & Related papers (2024-10-09T02:27:58Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Rethinking ChatGPT's Success: Usability and Cognitive Behaviors Enabled by Auto-regressive LLMs' Prompting [5.344199202349884]
We analyze the structure of modalities within both two types of Large Language Models and six task-specific channels during deployment.
We examine the stimulation of diverse cognitive behaviors in LLMs through the adoption of free-form text and verbal contexts.
arXiv Detail & Related papers (2024-05-17T00:19:41Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Neuro-Symbolic Causal Language Planning with Commonsense Prompting [67.06667162430118]
Language planning aims to implement complex high-level goals by decomposition into simpler low-level steps.
Previous methods require either manual exemplars or annotated programs to acquire such ability from large language models.
This paper proposes Neuro-Symbolic Causal Language Planner (CLAP) that elicits procedural knowledge from the LLMs with commonsense-infused prompting.
arXiv Detail & Related papers (2022-06-06T22:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.