論文の概要: From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
- arxiv url: http://arxiv.org/abs/2505.03510v1
- Date: Tue, 06 May 2025 13:20:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.387038
- Title: From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
- Title(参考訳): ニューロンから計算へ:パターン認識のための生物貯留層計算
- Authors: Ludovico Iannello, Luca Ciampi, Gabriele Lagani, Fabrizio Tonelli, Eleonora Crocco, Lucio Maria Calcagnile, Angelo Di Garbo, Federico Cremisi, Giuseppe Amato,
- Abstract要約: 我々は、培養された生体ニューロンのプールを貯水池基質として活用し、生物貯水池コンピューティング(BRC)を創出する新しい貯水池コンピューティングのパラダイムを導入する。
このシステムはエコー状態ネットワーク(ESN)と同様に動作し、神経活動が培養されたニューロンのネットワークによって生成されることが鍵となる。
結果は、従来のニューラルネットワークで処理されるタスクを実行するために、生物学的ニューラルネットワークを使用することの可能性を示している。
- 参考スコア(独自算出の注目度): 3.342739594466204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a novel paradigm for reservoir computing (RC) that leverages a pool of cultured biological neurons as the reservoir substrate, creating a biological reservoir computing (BRC). This system operates similarly to an echo state network (ESN), with the key distinction that the neural activity is generated by a network of cultured neurons, rather than being modeled by traditional artificial computational units. The neuronal activity is recorded using a multi-electrode array (MEA), which enables high-throughput recording of neural signals. In our approach, inputs are introduced into the network through a subset of the MEA electrodes, while the remaining electrodes capture the resulting neural activity. This generates a nonlinear mapping of the input data to a high-dimensional biological feature space, where distinguishing between data becomes more efficient and straightforward, allowing a simple linear classifier to perform pattern recognition tasks effectively. To evaluate the performance of our proposed system, we present an experimental study that includes various input patterns, such as positional codes, bars with different orientations, and a digit recognition task. The results demonstrate the feasibility of using biological neural networks to perform tasks traditionally handled by artificial neural networks, paving the way for further exploration of biologically-inspired computing systems, with potential applications in neuromorphic engineering and bio-hybrid computing.
- Abstract(参考訳): 本稿では,培養された生体ニューロンのプールを貯留層として活用し,生物貯水池コンピューティング(BRC)を創出する,貯水池コンピューティング(RC)の新しいパラダイムを提案する。
このシステムはエコー状態ネットワーク(ESN)と同様に動作し、従来の人工計算ユニットによってモデル化されるのではなく、培養されたニューロンのネットワークによって神経活動が生成されるという重要な特徴を持つ。
神経活動は、神経信号の高スループット記録を可能にするマルチ電極アレイ(MEA)を用いて記録される。
提案手法では,MEA電極のサブセットを介して入力をネットワークに導入し,残りの電極が神経活動を捉える。
これにより、入力データの高次元的特徴空間への非線形マッピングが生成され、データの区別がより効率的で簡単になり、単純な線形分類器がパターン認識タスクを効果的に実行できるようになる。
提案システムの性能を評価するために, 位置符号, 方向の異なるバー, 数字認識タスクなど, 様々な入力パターンを含む実験を行った。
この結果は、バイオニューラルネットワークを用いて、従来の人工ニューラルネットワークで処理されたタスクを実行する可能性を示し、ニューロモルフィックエンジニアリングとバイオハイブリッドコンピューティングの潜在的な応用を含む、生物学的にインスパイアされたコンピューティングシステムのさらなる探索の道を開いた。
関連論文リスト
- Event-Driven Implementation of a Physical Reservoir Computing Framework for superficial EMG-based Gesture Recognition [2.222098162797332]
本稿では,表面筋電図(SEMG)データをイベント駆動方式で抽出することで,ジェスチャー認識のための新しいニューロモーフィックな実装手法を提案する。
このネットワークは、スパイキングニューラルネットワーク(SNN)の領域内で、回転ニューロン貯水池(Rotating Neuron Reservoir, RNR)と呼ばれる単純な構造化およびハードウェアフレンドリな物理貯留層コンピューティングフレームワークを実装して設計された。
提案システムはオープンアクセス型大規模sEMGデータベースで検証され,平均分類精度は74.6%,80.3%であった。
論文 参考訳(メタデータ) (2025-03-10T17:18:14Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Design and development of opto-neural processors for simulation of
neural networks trained in image detection for potential implementation in
hybrid robotics [0.0]
リビングニューラルネットワークは、消費電力の低減、処理の高速化、生物学的リアリズムの利点を提供する。
本研究は,オプトジェネティクスによる精密アクティベーションを用いたSTDPベースのアルゴリズムを逆伝播させることにより,間接的に訓練されたシミュレーション型生きたニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T04:42:49Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - A biologically plausible neural network for multi-channel Canonical
Correlation Analysis [12.940770779756482]
皮質錐体ニューロンは、複数の神経集団から入力を受け取り、これらの入力を別々の樹状体区画に統合する。
我々は,生物学的に妥当なニューラルネットワークで実装可能なマルチチャネルCAAアルゴリズムを提案する。
生物学的信頼性のためには、ネットワークはオンライン環境で動作し、シナプス更新ルールはローカルである必要がある。
論文 参考訳(メタデータ) (2020-10-01T16:17:53Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。