Histo-Miner: Deep Learning based Tissue Features Extraction Pipeline from H&E Whole Slide Images of Cutaneous Squamous Cell Carcinoma
- URL: http://arxiv.org/abs/2505.04672v1
- Date: Wed, 07 May 2025 09:34:03 GMT
- Title: Histo-Miner: Deep Learning based Tissue Features Extraction Pipeline from H&E Whole Slide Images of Cutaneous Squamous Cell Carcinoma
- Authors: Lucas Sancéré, Carina Lorenz, Doris Helbig, Oana-Diana Persa, Sonja Dengler, Alexander Kreuter, Martim Laimer, Anne Fröhlich, Jennifer Landsberg, Johannes Brägelmann, Katarzyna Bozek,
- Abstract summary: Histo-Miner is a deep learning pipeline for analysis of Whole-Slide Images (WSIs) of skin tissue.<n>We develop our pipeline for the analysis of patient samples of cutaneous squamous cell carcinoma (c SCC)<n>Histo-Miner employs convolutional neural networks and vision transformers for nucleus segmentation and classification as well as tumor region segmentation.
- Score: 31.25944547782148
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in digital pathology have enabled comprehensive analysis of Whole-Slide Images (WSI) from tissue samples, leveraging high-resolution microscopy and computational capabilities. Despite this progress, there is a lack of labeled datasets and open source pipelines specifically tailored for analysis of skin tissue. Here we propose Histo-Miner, a deep learning-based pipeline for analysis of skin WSIs and generate two datasets with labeled nuclei and tumor regions. We develop our pipeline for the analysis of patient samples of cutaneous squamous cell carcinoma (cSCC), a frequent non-melanoma skin cancer. Utilizing the two datasets, comprising 47,392 annotated cell nuclei and 144 tumor-segmented WSIs respectively, both from cSCC patients, Histo-Miner employs convolutional neural networks and vision transformers for nucleus segmentation and classification as well as tumor region segmentation. Performance of trained models positively compares to state of the art with multi-class Panoptic Quality (mPQ) of 0.569 for nucleus segmentation, macro-averaged F1 of 0.832 for nucleus classification and mean Intersection over Union (mIoU) of 0.884 for tumor region segmentation. From these predictions we generate a compact feature vector summarizing tissue morphology and cellular interactions, which can be used for various downstream tasks. Here, we use Histo-Miner to predict cSCC patient response to immunotherapy based on pre-treatment WSIs from 45 patients. Histo-Miner identifies percentages of lymphocytes, the granulocyte to lymphocyte ratio in tumor vicinity and the distances between granulocytes and plasma cells in tumors as predictive features for therapy response. This highlights the applicability of Histo-Miner to clinically relevant scenarios, providing direct interpretation of the classification and insights into the underlying biology.
Related papers
- A tissue and cell-level annotated H&E and PD-L1 histopathology image dataset in non-small cell lung cancer [0.7400138614614626]
IGNITE dataset is a multi-stain, multi-centric, and multi-scanner dataset of annotated NSCLC whole-slide images.<n>This dataset includes 887 fully annotated regions of interest from 155 unique patients across three complementary tasks.<n>To the best of our knowledge, this is the first public NSCLC dataset with manual annotations of H&E in metastatic sites and PD-L1 IHC.
arXiv Detail & Related papers (2025-07-21T12:16:22Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.<n>The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.<n>The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images [0.5906576076342179]
Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns.
We propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor.
arXiv Detail & Related papers (2023-11-27T14:12:51Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients.
Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis.
We developed a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage.
arXiv Detail & Related papers (2023-09-13T16:59:50Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Generating counterfactual explanations of tumor spatial proteomes to
discover effective strategies for enhancing immune infiltration [44.99833362998488]
The tumor microenvironment (TME) significantly impacts cancer prognosis due to its immune composition.
Here, we formulate T-cell infiltration prediction as a self-supervised machine learning problem.
We apply our framework to melanoma, colorectal cancer liver metastases, and breast tumor data, discovering perturbations predicted to support T-cell infiltration.
arXiv Detail & Related papers (2022-11-08T05:46:02Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
arXiv Detail & Related papers (2022-10-06T18:23:42Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - DLBCL-Morph: Morphological features computed using deep learning for an
annotated digital DLBCL image set [3.5947673199446935]
Diffuse Large B-Cell Lymphoma (DLBCL) is the most common non-Hodgkin lymphoma.
No morphologic features have been consistently demonstrated to correlate with prognosis.
We present a morphologic analysis of histology sections from 209 DLBCL cases with associated clinical and cytogenetic data.
arXiv Detail & Related papers (2020-09-17T07:43:42Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.