論文の概要: SetONet: A Set-Based Operator Network for Solving PDEs with Variable-Input Sampling
- arxiv url: http://arxiv.org/abs/2505.04738v2
- Date: Thu, 23 Oct 2025 01:10:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:05.621614
- Title: SetONet: A Set-Based Operator Network for Solving PDEs with Variable-Input Sampling
- Title(参考訳): SetONet: 可変入力サンプリングによるPDE解決のためのセットベース演算子ネットワーク
- Authors: Stepan Tretiakov, Xingjian Li, Krishna Kumar,
- Abstract要約: ニューラル作用素は微分方程式を解く関数空間間の写像の学習において有望であることを示す。
標準のDeepONetでは、入力関数を一定の場所でサンプリングする必要がある。
本稿では,DeepONet の分岐ネットワークを改良した Set Operator Network (SetONet) を提案する。
- 参考スコア(独自算出の注目度): 2.72451030940933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural operators, particularly the Deep Operator Network (DeepONet), have shown promise in learning mappings between function spaces for solving differential equations. However, standard DeepONet requires input functions to be sampled at fixed locations, limiting its applicability when sensor configurations vary or inputs exist on irregular grids. We introduce the Set Operator Network (SetONet), which modifies DeepONet's branch network to process input functions as unordered sets of location-value pairs. By incorporating Deep Sets principles, SetONet ensures permutation invariance while maintaining the same parameter count as the baseline. On classical operator-learning benchmarks, SetONet achieves parity with DeepONet on fixed layouts while sustaining accuracy under variable sensor configurations or sensor drop-off - conditions for which standard DeepONet is not applicable. More significantly, SetONet natively handles problems where inputs are naturally represented as unstructured point clouds (such as point sources or density samples) rather than values on fixed grids, a capability standard DeepONet lacks. On heat conduction with point sources, advection-diffusion modeling chemical plumes, and optimal transport between density samples, SetONet learns operators end-to-end without rasterization or multi-stage pipelines. These problems feature inputs that are naturally discrete point sets (point sources or density samples) rather than functions on fixed grids. SetONet is a DeepONet-class architecture that addresses such problems with a lightweight design, significantly broadening the applicability of operator learning to problems with variable, incomplete, or unstructured input data.
- Abstract(参考訳): ニューラル演算子、特にディープ演算子ネットワーク(DeepONet)は、微分方程式を解くために関数空間間の写像を学習することを約束している。
しかし、標準のDeepONetでは、センサ構成が異なる場合や不規則なグリッド上に入力が存在する場合、その適用性を制限するために、一定の場所で入力関数をサンプリングする必要がある。
本稿では,DeepONetの分岐ネットワークを改良したSetONet(SetONet)を導入し,位置値ペアの無順序集合として入力関数を処理する。
Deep Setsの原則を取り入れることで、SetONetは、ベースラインと同じパラメータ数を維持しながら、置換不変性を保証します。
古典的な演算子ラーニングベンチマークでは、SetONetはDeepONetと一定のレイアウトで同等であり、可変センサー設定やセンサーのドロップオフ(標準のDeepONetが適用できない条件)の下で精度を保っている。
さらに重要なことに、SetONetは、インプットが固定グリッドの値ではなく、非構造化ポイントクラウド(ポイントソースや密度サンプルなど)として自然に表現されるような問題にネイティブに対処する。
点源による熱伝導、対流拡散モデル化学プラム、密度サンプル間の最適な輸送について、SetONetはラスタ化や多段パイプラインなしで演算子をエンドツーエンドに学習する。
これらの問題は、固定格子上の関数よりも自然に離散的な点集合(点源または密度サンプル)である入力を特徴付ける。
SetONetは、軽量な設計でそのような問題に対処するDeepONetクラスアーキテクチャであり、可変、不完全、または非構造化の入力データに関する問題への演算子学習の適用性を大幅に広げている。
関連論文リスト
- SeqPE: Transformer with Sequential Position Encoding [76.22159277300891]
SeqPEは、各$n$次元位置指数をシンボルシーケンスとして表現し、軽量なシーケンシャル位置エンコーダを用いて埋め込みを学習する。
言語モデリング、長文質問応答、および2次元画像分類による実験により、SeqPEはパープレキシティ、正確なマッチング(EM)、精度の強いベースラインを超えるだけでなく、手作業によるアーキテクチャ再設計を必要とせず、多次元入力へのシームレスな一般化を可能にする。
論文 参考訳(メタデータ) (2025-06-16T09:16:40Z) - DeepONet Augmented by Randomized Neural Networks for Efficient Operator Learning in PDEs [5.84093922354671]
精度と効率のバランスをとるために設計されたハイブリッドアーキテクチャであるRaNN-DeepONetsを提案する。
RaNN-DeepONetsは計算コストを桁違いに削減しながら、同等の精度を達成する。
これらの結果は、PDEシステムにおける演算子学習の効率的な代替手段としてのRaNN-DeepONetsの可能性を強調している。
論文 参考訳(メタデータ) (2025-03-01T03:05:29Z) - Alpha-VI DeepONet: A prior-robust variational Bayesian approach for enhancing DeepONets with uncertainty quantification [0.0]
一般化変分推論(GVI)を組み込んだ新しいディープオペレータネットワーク(DeepONet)を提案する。
分岐ネットワークとトランクネットワークのビルディングブロックとしてベイズニューラルネットワークを組み込むことで,不確実な定量化が可能なDeepONetを実現する。
変動目的関数の修正は平均二乗誤差を最小化する点で優れた結果をもたらすことを示す。
論文 参考訳(メタデータ) (2024-08-01T16:22:03Z) - A Resolution Independent Neural Operator [0.0]
任意のセンサ位置とカウントを持つ入力出力データから演算子を学習するための一般的なフレームワークを提案する。
暗黙的ニューラル表現としてパラメータ化された連続基底関数を適応的に学習する2つの辞書学習アルゴリズムを提案する。
これらの基底関数は入力関数データを有限次元の埋め込み空間に投影し、アーキテクチャ上の変更なしにDeepONetと互換性を持つ。
論文 参考訳(メタデータ) (2024-07-17T21:03:21Z) - RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators [0.0]
ランダムプロジェクションに基づく演算子ネットワーク(RandONets)を提案する。
ランダムネット(RandONets)は、線形および非線形作用素を学習するランダムプロジェクションを持つ浅いネットワークである。
このタスクにおいて、RandONetsは数値近似の精度と計算コストの両面で、バニラ"DeepOnetsよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-08T13:20:48Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
本稿では,ニューラル常微分方程式(ODE)が出力仕様を満たすことを保証するための新しい手法を提案する。
提案手法では,出力仕様を学習システムのパラメータや入力の制約に変換するために,制御障壁関数のクラスを用いる。
論文 参考訳(メタデータ) (2022-10-10T15:18:28Z) - Variationally Mimetic Operator Networks [1.7667202894248826]
本研究は, 近似変分あるいは弱定式化から得られる数値解の形式を模倣した, 演算子ネットワークのための新しいアーキテクチャについて述べる。
これらのアイデアの汎用楕円型PDEへの応用は、変動緩和作用素ネットワーク(VarMiON)につながる。
VarMiONソリューションにおけるエラーの分析では、トレーニングデータにおけるエラー、トレーニングエラー、入力および出力関数における二次誤差、およびトレーニングデータセットにおけるテスト入力関数と最も近い関数の間の距離を測定する"カバレッジエラー"が含まれていることが明らかになった。
論文 参考訳(メタデータ) (2022-09-26T17:39:53Z) - Discrete Key-Value Bottleneck [95.61236311369821]
ディープニューラルネットワークは、データストリームがi.d.d.であり、ラベル付きデータが豊富である分類タスクでうまく機能する。
この課題に対処した強力なアプローチの1つは、手軽に利用可能なデータ量に対する大規模なエンコーダの事前トレーニングと、タスク固有のチューニングである。
しかし、新しいタスクを考えると、多くの重みを微調整する必要があるため、エンコーダの重みを更新することは困難であり、その結果、以前のタスクに関する情報を忘れてしまう。
この問題に対処するモデルアーキテクチャを提案し,個別かつ学習可能なキー値符号のペアを含む離散的ボトルネックの上に構築する。
論文 参考訳(メタデータ) (2022-07-22T17:52:30Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Learning to Encode Position for Transformer with Continuous Dynamical
Model [88.69870971415591]
本研究では,トランスフォーマーモデルなどの非リカレントモデルの位置情報をエンコードする新しい学習方法を提案する。
このような力学系による位置指数に沿った符号化結果の進化をモデル化する。
論文 参考訳(メタデータ) (2020-03-13T00:41:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。