論文の概要: Flower Across Time and Media: Sentiment Analysis of Tang Song Poetry and Visual Correspondence
- arxiv url: http://arxiv.org/abs/2505.04785v1
- Date: Wed, 07 May 2025 20:27:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.669114
- Title: Flower Across Time and Media: Sentiment Analysis of Tang Song Poetry and Visual Correspondence
- Title(参考訳): 時とメディアの花:唐詩の感性分析と視覚的対応
- Authors: Shuai Gong, Tiange Zhou,
- Abstract要約: 唐(618年~907年)と宋(960年~1279年)の王朝は、中国文化の卓越した繁栄を目撃した。
花のモチーフは詩的な感情と芸術的デザインの両方のダイナミックな媒体として機能した。
本研究は,唐詩における花のイメージの感情パターンの定量化にBERTを用いた感情分析を用いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Tang (618 to 907) and Song (960 to 1279) dynasties witnessed an extraordinary flourishing of Chinese cultural expression, where floral motifs served as a dynamic medium for both poetic sentiment and artistic design. While previous scholarship has examined these domains independently, the systematic correlation between evolving literary emotions and visual culture remains underexplored. This study addresses that gap by employing BERT-based sentiment analysis to quantify emotional patterns in floral imagery across Tang Song poetry, then validating these patterns against contemporaneous developments in decorative arts.Our approach builds upon recent advances in computational humanities while remaining grounded in traditional sinological methods. By applying a fine tuned BERT model to analyze peony and plum blossom imagery in classical poetry, we detect measurable shifts in emotional connotations between the Tang and Song periods. These textual patterns are then cross berenced with visual evidence from textiles, ceramics, and other material culture, revealing previously unrecognized synergies between literary expression and artistic representation.
- Abstract(参考訳): 唐(618年~907年)と宋(960年~1279年)の王朝は、華麗なモチーフが詩的感情と芸術的デザインの両方のダイナミックな媒体として機能する、華麗な中国文化表現の隆盛を目撃した。
これまでの学問では、これらの領域を独立して調べてきたが、進化する文学的感情と視覚文化の体系的相関は、まだ解明されていない。
本研究は,唐詩における花のイメージの感情パターンの定量化にBERTを用いた感情分析を用いて,装飾芸術における同時代の発達に対してこれらのパターンを検証し,従来の罪学的手法を基礎として,近年の計算人文科学の進歩を基盤としている。
古典詩の華や梅のイメージを微調整したBERTモデルを用いて分析することにより,唐・宋の情緒的意味の変化を計測できる。
これらのテクストのパターンは、繊維、陶器、その他の材料文化の視覚的証拠と交差し、それまで認識されていなかった文学的表現と芸術的表現の相乗効果が明らかになる。
関連論文リスト
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talkは、感情と同一性を切り離し、類似した特徴を持つ感情を協調するフレームワークである。
我々は、モーダル・アテンションを通して、音声と視覚の感情の手がかりを共同でモデル化するアンタングル型感情埋め込み装置を開発した。
次に,学習可能な感情バンクを用いた相関強化感情調和モジュールを提案する。
第3に、拡散過程における感情の一貫性を強制する感情識別目標を設計する。
論文 参考訳(メタデータ) (2025-04-25T05:28:21Z) - Ashaar: Automatic Analysis and Generation of Arabic Poetry Using Deep
Learning Approaches [7.021140304091526]
本稿では,アラビア詩の分析・生成に特化して設計されたデータセットと事前学習モデルの集合を含むtextitAshaar というフレームワークを紹介する。
提案手法で確立されたパイプラインは, メーター, テーマ, 年代分類など, 詩の様々な側面を包含する。
この取り組みの一環として、詩生成のためのデータセットと、診断のためのデータセットと、Arudiスタイルの予測のためのデータセットを4つ提供します。
論文 参考訳(メタデータ) (2023-07-12T15:07:16Z) - A Method to Judge the Style of Classical Poetry Based on Pre-trained
Model [13.899056358137287]
本論文は、現在最も完璧な漢詩のデータセットを構築し、このデータセットに基づいて、BART-poem事前学習モデルを訓練し、一般に適用可能な詩風判断法を推し進めている。
実験の結果、テストされた詩文の判断結果は、基本的には以前の王朝の批判者による結論と一致し、清州氏の前衛的な判断を検証し、唐宋の詩文認識の課題を解き明かした。
論文 参考訳(メタデータ) (2022-11-09T03:11:15Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - PoeticTTS -- Controllable Poetry Reading for Literary Studies [21.29478270833139]
我々は、人間の参照的引用から韻律的な値をクローンして詩を再合成し、その後、微粒な韻律制御を用いて合成音声を操作する。
詩のTTSモデルを微調整することで、詩のイントネーションパターンを広範囲に捉え、韻律のクローニングと操作に有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-11T13:15:27Z) - Exploratory Data Analysis of Urdu Poetry [0.0]
本研究は、他の形態よりも人気を博し、賞賛されるウルドゥ・ガザルの主な特徴を探求する。
愛、自然、鳥、花などを表現する言葉の種類については、詳しく説明されている。
論文 参考訳(メタデータ) (2021-12-03T20:06:11Z) - Semantics of European poetry is shaped by conservative forces: The
relationship between poetic meter and meaning in accentual-syllabic verse [0.0]
我々は1819世紀のヨーロッパ文学において、詩のメーターと意味論の永続的な関連性を示す最初の大規模な公式な証拠を提供する。
本研究は,15万詩の抽象的意味的特徴を用いた一連のクラスタリング実験を通して,この関係を追究するものである。
論文 参考訳(メタデータ) (2021-09-15T08:20:01Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
我々は,過去20年間の情緒的イメージコンテンツ分析(AICA)の発展を包括的にレビューする。
我々は、感情的ギャップ、知覚主観性、ラベルノイズと欠如という3つの主要な課題に関して、最先端の手法に焦点を当てる。
画像の内容やコンテキスト理解,グループ感情クラスタリング,ビューアーとイメージのインタラクションなど,今後の課題や研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-06-30T15:20:56Z) - CCPM: A Chinese Classical Poetry Matching Dataset [50.90794811956129]
本稿では,詩のマッチングによるモデルの意味的理解を評価するための新しい課題を提案する。
この課題は、現代漢訳の漢詩では、4人の候補者の中から1行の漢詩を選ばなければならない。
このデータセットを構築するために、まず中国古典詩と現代中国語の翻訳の並列データを得る。
論文 参考訳(メタデータ) (2021-06-03T16:49:03Z) - Generating Major Types of Chinese Classical Poetry in a Uniformed
Framework [88.57587722069239]
GPT-2に基づく漢詩の主要なタイプを生成するフレームワークを提案する。
予備的な結果は、この強化されたモデルが、形も内容も質の高い大型漢詩を生成できることを示している。
論文 参考訳(メタデータ) (2020-03-13T14:16:25Z) - MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space [79.70053419040902]
多様な要素を吸収し,多様なスタイルを創出し,多様性を促進する新しいモデルであるMixPoetを提案する。
半教師付き変分オートエンコーダに基づいて、我々のモデルは潜在空間をいくつかの部分空間に切り離し、それぞれが敵の訓練によって1つの影響因子に条件付けされる。
中国詩の実験結果は、MixPoetが3つの最先端モデルに対して多様性と品質の両方を改善していることを示している。
論文 参考訳(メタデータ) (2020-03-13T03:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。