Cardioformer: Advancing AI in ECG Analysis with Multi-Granularity Patching and ResNet
- URL: http://arxiv.org/abs/2505.05538v1
- Date: Thu, 08 May 2025 16:44:21 GMT
- Title: Cardioformer: Advancing AI in ECG Analysis with Multi-Granularity Patching and ResNet
- Authors: Md Kamrujjaman Mobin, Md Saiful Islam, Sadik Al Barid, Md Masum,
- Abstract summary: Cardioformer is a novel multi-granularity hybrid model.<n>It integrates cross-channel patching, hierarchical residual learning, and a two-stage self-attention mechanism.<n>It consistently outperforms four state-of-the-art baselines.
- Score: 0.6919386619690135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) classification is crucial for automated cardiac disease diagnosis, yet existing methods often struggle to capture local morphological details and long-range temporal dependencies simultaneously. To address these challenges, we propose Cardioformer, a novel multi-granularity hybrid model that integrates cross-channel patching, hierarchical residual learning, and a two-stage self-attention mechanism. Cardioformer first encodes multi-scale token embeddings to capture fine-grained local features and global contextual information and then selectively fuses these representations through intra- and inter-granularity self-attention. Extensive evaluations on three benchmark ECG datasets under subject-independent settings demonstrate that model consistently outperforms four state-of-the-art baselines. Our Cardioformer model achieves the AUROC of 96.34$\pm$0.11, 89.99$\pm$0.12, and 95.59$\pm$1.66 in MIMIC-IV, PTB-XL and PTB dataset respectively outperforming PatchTST, Reformer, Transformer, and Medformer models. It also demonstrates strong cross-dataset generalization, achieving 49.18% AUROC on PTB and 68.41% on PTB-XL when trained on MIMIC-IV. These findings underscore the potential of Cardioformer to advance automated ECG analysis, paving the way for more accurate and robust cardiovascular disease diagnosis. We release the source code at https://github.com/KMobin555/Cardioformer.
Related papers
- Explainable Parallel CNN-LSTM Model for Differentiating Ventricular Tachycardia from Supraventricular Tachycardia with Aberrancy in 12-Lead ECGs [4.263117296632119]
We propose a computationally efficient deep learning solution to improve diagnostic accuracy and provide model interpretability for clinical deployment.<n>A novel lightweight parallel deep architecture is introduced. Each pipeline processes individual ECG leads using two 1D-CNN blocks to extract local features.<n>The model achieved $95.63%$ accuracy ($95%$ CI: $93.07-98.19%$), with sensitivity=$95.10%$, specificity=$96.06%$, and F1-score=$95.12%$.
arXiv Detail & Related papers (2025-07-14T12:12:34Z) - Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias [0.9208007322096533]
We show that nonlinear dimensionality reduction (NLDR) can accommodate medically relevant features in ECG signals.<n>Using the MLII and V1 leads of the MIT-BIH dataset, we demonstrate that NLDR holds much promise for cardiac monitoring.
arXiv Detail & Related papers (2025-06-19T17:39:57Z) - xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM [14.02717596836022]
We propose xLSTM-ECG, a novel approach for multi-label classification of ECG signals.<n>To the best of our knowledge, this work represents the first design and application of xLSTM modules specifically adapted for multi-label ECG classification.
arXiv Detail & Related papers (2025-04-14T16:12:46Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients [3.676588766498097]
Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality.
This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data.
arXiv Detail & Related papers (2024-09-24T13:33:46Z) - Prospects for AI-Enhanced ECG as a Unified Screening Tool for Cardiac and Non-Cardiac Conditions -- An Explorative Study in Emergency Care [0.9503773054285559]
We investigate the capability of a single model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a sole ECG collected in the emergency department.
We find that 253, 81 cardiac, and 172 non-cardiac, ICD codes can be reliably predicted in the sense of exceeding an AUROC score of 0.8 in a statistically significant manner.
arXiv Detail & Related papers (2023-12-18T09:29:42Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
We propose two computationally efficient multimodal fusion frameworks for ECG heart beat classification.
In MFF, we extracted features from penultimate layer of CNNs and fused them to get unique and interdependent information.
We achieved classification accuracy of 99.7% and 99.2% on arrhythmia and MI classification, respectively.
arXiv Detail & Related papers (2021-07-21T03:48:35Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.