論文の概要: Flight Validation of Learning-Based Trajectory Optimization for the Astrobee Free-Flyer
- arxiv url: http://arxiv.org/abs/2505.05588v1
- Date: Thu, 08 May 2025 18:42:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.046572
- Title: Flight Validation of Learning-Based Trajectory Optimization for the Astrobee Free-Flyer
- Title(参考訳): アストローブフリーフライヤーの学習に基づく軌道最適化の飛行検証
- Authors: Somrita Banerjee, Abhishek Cauligi, Marco Pavone,
- Abstract要約: 国際宇宙ステーションのアストローブ自由飛行ロボットによる飛行実験の結果を報告する。
理論的解決の保証を保ちながら、機械学習が軌道上での軌道最適化をいかに加速するかを実証する。
- 参考スコア(独自算出の注目度): 17.306347323545985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although widely used in commercial and industrial robotics, trajectory optimization has seen limited use in space applications due to its high computational demands. In this work, we present flight results from experiments with the Astrobee free-flying robot on board the International Space Station (ISS), that demonstrate how machine learning can accelerate on-board trajectory optimization while preserving theoretical solver guarantees. To the best of the authors' knowledge, this is the first-ever demonstration of learning-based control on the ISS. Our approach leverages the GuSTO sequential convex programming framework and uses a neural network, trained offline, to map problem parameters to effective initial ``warm-start'' trajectories, paving the way for faster real-time optimization on resource-constrained space platforms.
- Abstract(参考訳): 商業用や工業用ロボティクスで広く使われているが、軌道最適化は高い計算要求のために宇宙用途でしか使われていない。
本研究では,国際宇宙ステーション(ISS)のアストローブ自由飛行ロボットを用いて,理論的解決の保証を保ちながら,機械学習が軌道上での軌道最適化をいかに加速するかを示す飛行結果を示す。
著者の知る限りでは、これはISSにおける学習に基づく制御のデモンストレーションとしては初めてである。
このアプローチでは、GuSTOシーケンシャルな凸プログラミングフレームワークを活用し、ニューラルネットワークを使用して、トレーニングされたオフラインで、問題パラメータを '`warm-start'' 軌道にマッピングし、リソース制約のある宇宙プラットフォーム上で、より高速なリアルタイム最適化を実現する。
関連論文リスト
- Space for Improvement: Navigating the Design Space for Federated Learning in Satellite Constellations [0.8437187555622164]
衛星コンステレーションの設計とハードウェア対応テストプラットフォームであるFLySTacKを用いて,既存のFLアルゴリズムの空間化手法を開発した。
我々はAutoFLSatを紹介した。これは空間に対する一般化された階層的な自律的FLアルゴリズムであり、主要な代替手段よりも12.5%から37.5%のモデルトレーニング時間を短縮する。
論文 参考訳(メタデータ) (2024-10-31T23:49:36Z) - Learning-Initialized Trajectory Planning in Unknown Environments [4.2960463890487555]
未知の環境での自律飛行の計画には、空間軌道と時間軌道の両方を正確に計画する必要がある。
本稿ではニューラルdトラジェクトリ・プランナーを用いて最適化を導く新しい手法を提案する。
遅延計画に対する耐性を持って、堅牢なオンラインリプランニングをサポートするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-19T15:07:26Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
強化学習(RL)はロボットナビゲーションにおいて有望なアプローチであり、ロボットは試行錯誤を通じて学習することができる。
現実世界のロボットタスクは、しばしばまばらな報酬に悩まされ、非効率な探索と準最適政策に繋がる。
本稿では,RLに基づくロボットナビゲーションにおいて,報酬関数を変更せずにサンプル効率を向上させる新しい手法であるConfidence-Controlled Exploration (CCE)を紹介する。
論文 参考訳(メタデータ) (2023-06-09T18:45:15Z) - Optimality Principles in Spacecraft Neural Guidance and Control [16.59877059263942]
我々は、エンドツーエンドの神経誘導と制御アーキテクチャ(以下、G&CNetと呼ばれる)は、最適な原則に従って行動することの重荷をオンボードで転送できると主張している。
このようにして、センサー情報はリアルタイムで最適な計画に変換され、ミッションの自律性と堅牢性が向上する。
本稿では、惑星間移動、着陸、近接操作のシミュレーションにおいて、そのようなニューラルネットワークのトレーニングにおいて得られた主な成果について論じる。
論文 参考訳(メタデータ) (2023-05-22T14:48:58Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
本研究の目的は,自動走行システムにおける操舵角度予測の精度の高いモデルを得ることである。
BOは限られた試行数で、BOST-LSTMと呼ばれるモデルを特定し、古典的なエンドツーエンド駆動モデルと比較して最も正確な結果を得た。
論文 参考訳(メタデータ) (2021-10-22T15:25:14Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
立方体の作動限界における時間-最適軌道の計画は未解決の問題である。
四重項のアクチュエータポテンシャルをフル活用する解を提案する。
我々は、世界最大規模のモーションキャプチャーシステムにおいて、実世界の飛行における我々の方法を検証する。
論文 参考訳(メタデータ) (2021-08-10T09:26:43Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Real-Time Optimal Guidance and Control for Interplanetary Transfers
Using Deep Networks [10.191757341020216]
最適な例の模倣学習は、ネットワークトレーニングパラダイムとして使用される。
G&CNETは、宇宙船の最適誘導制御システムの実装をオンボードでリアルタイムに行うのに適している。
論文 参考訳(メタデータ) (2020-02-20T23:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。