論文の概要: EquiHGNN: Scalable Rotationally Equivariant Hypergraph Neural Networks
- arxiv url: http://arxiv.org/abs/2505.05650v1
- Date: Thu, 08 May 2025 21:11:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.08831
- Title: EquiHGNN: Scalable Rotationally Equivariant Hypergraph Neural Networks
- Title(参考訳): EquiHGNN: スケーラブルな回転同変ハイパーグラフニューラルネットワーク
- Authors: Tien Dang, Truong-Son Hy,
- Abstract要約: 分子モデリングを改善するために対称認識表現を統合するフレームワークであるEquiHGNNを紹介する。
我々のアプローチは幾何学的および位相的特性を保ち、より堅牢で物理的に意味のある表現をもたらす。
小さい分子と大きな分子の両方の実験では、高次相互作用は小さな分子に対して限られた利益をもたらすが、大きな分子では一貫して2Dグラフよりも優れていることが示されている。
- 参考スコア(独自算出の注目度): 1.7034813545878589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular interactions often involve high-order relationships that cannot be fully captured by traditional graph-based models limited to pairwise connections. Hypergraphs naturally extend graphs by enabling multi-way interactions, making them well-suited for modeling complex molecular systems. In this work, we introduce EquiHGNN, an Equivariant HyperGraph Neural Network framework that integrates symmetry-aware representations to improve molecular modeling. By enforcing the equivariance under relevant transformation groups, our approach preserves geometric and topological properties, leading to more robust and physically meaningful representations. We examine a range of equivariant architectures and demonstrate that integrating symmetry constraints leads to notable performance gains on large-scale molecular datasets. Experiments on both small and large molecules show that high-order interactions offer limited benefits for small molecules but consistently outperform 2D graphs on larger ones. Adding geometric features to these high-order structures further improves the performance, emphasizing the value of spatial information in molecular learning. Our source code is available at https://github.com/HySonLab/EquiHGNN/
- Abstract(参考訳): 分子相互作用はしばしば、対接続に制限された従来のグラフベースのモデルによって完全に捕捉できない高次関係を含む。
ハイパーグラフは、マルチウェイ相互作用を可能にすることでグラフを自然に拡張し、複雑な分子系のモデリングに適している。
本研究では,分子モデルを改善するために対称性認識表現を統合した同変ハイパーグラフニューラルネットワークフレームワークであるEquiHGNNを紹介する。
関係する変換群の下で同値を強制することにより、我々のアプローチは幾何学的および位相的特性を保ち、より堅牢で物理的に有意義な表現をもたらす。
そこで本研究では, 対称性の制約を統合することで, 大規模分子データセットにおける顕著な性能向上が期待できることを示す。
小さい分子と大きな分子の両方の実験では、高次相互作用は小さな分子に対して限られた利益をもたらすが、大きな分子では一貫して2Dグラフよりも優れていることが示されている。
これらの高次構造に幾何学的特徴を加えることで性能が向上し、分子学習における空間情報の価値が強調される。
ソースコードはhttps://github.com/HySonLab/EquiHGNN/で入手できる。
関連論文リスト
- Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
GNNs [66.98487644676906]
我々は,幾何学的GNNの汎用エンハンサーであるNeural P$3$Mを導入し,その機能範囲を拡大する。
幅広い分子系に柔軟性を示し、エネルギーと力を予測する際、顕著な精度を示す。
また、さまざまなアーキテクチャを統合しながら、OE62データセットで平均22%の改善も達成している。
論文 参考訳(メタデータ) (2024-09-26T08:16:59Z) - SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning [27.713870291922333]
分子表現学習に適したSE(3)同変ハイパーグラフニューラルネットワークアーキテクチャを開発した。
SE3Setは、小さな分子データセットのための最先端(SOTA)モデルと同等のパフォーマンスを示している。
MD22データセットを上回り、全ての分子で約20%の精度で顕著な改善を達成している。
論文 参考訳(メタデータ) (2024-05-26T10:43:16Z) - Hyperbolic Graph Diffusion Model [24.049660417511074]
双曲グラフ拡散モデル(HGDM)と呼ばれる新しいグラフ生成法を提案する。
HGDMは、ノードを連続した双曲埋め込みにエンコードするオートエンコーダと、双曲潜在空間で動作するDMで構成される。
実験により、HGDMはグラフおよび分子生成ベンチマークにおいて、高度に階層的な構造を持つグラフ生成の品質を48%向上させることで、より良い性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-13T08:22:18Z) - Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation [32.66694406638287]
本研究では, 原子型, 正式な電荷, 結合情報, および3次元座標を持つ分子を生成する結合2Dおよび3D拡散モデル(JODO)を提案する。
我々のモデルは、単一または複数の量子特性をターゲットにした逆分子設計のために拡張することもできる。
論文 参考訳(メタデータ) (2023-05-21T04:49:53Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。