Quantum State Preparation via Large-Language-Model-Driven Evolution
- URL: http://arxiv.org/abs/2505.06347v1
- Date: Fri, 09 May 2025 18:00:02 GMT
- Title: Quantum State Preparation via Large-Language-Model-Driven Evolution
- Authors: Qing-Hong Cao, Zong-Yue Hou, Ying-Ying Li, Xiaohui Liu, Zhuo-Yang Song, Liang-Qi Zhang, Shutao Zhang, Ke Zhao,
- Abstract summary: We propose an automated framework for quantum circuit design to overcome the rigidity, scalability limitations, and expert dependence of traditional ones in variational quantum algorithms.<n>Our approach autonomously discovers hardware-efficient ans"atze with new features of scalability and system-size-independent number of variational parameters entirely from scratch.
- Score: 9.94808160501406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an automated framework for quantum circuit design by integrating large-language models (LLMs) with evolutionary optimization to overcome the rigidity, scalability limitations, and expert dependence of traditional ones in variational quantum algorithms. Our approach (FunSearch) autonomously discovers hardware-efficient ans\"atze with new features of scalability and system-size-independent number of variational parameters entirely from scratch. Demonstrations on the Ising and XY spin chains with n = 9 qubits yield circuits containing 4 parameters, achieving near-exact energy extrapolation across system sizes. Implementations on quantum hardware (Zuchongzhi chip) validate practicality, where two-qubit quantum gate noises can be effectively mitigated via zero-noise extrapolations for a spin chain system as large as 20 sites. This framework bridges algorithmic design and experimental constraints, complementing contemporary quantum architecture search frameworks to advance scalable quantum simulations.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Quantum-Chiplet: A Novel Python-Based Efficient and Scalable Design Methodology for Quantum Circuit Verification and Implementation [5.727672509269657]
We propose a new quantum representation (QPR) to facilitate the analysis of massively parallel quantum computation.<n>For the verification of quantum circuits, we introduce Quantum-Chiplet, a hierarchical quantum behavior modeling methodology.<n>A quantum amplitude estimation example demonstrates that this method significantly improves the design process, with more than 10x speed-up compared to IBM Qiskit at 14 qubits.
arXiv Detail & Related papers (2025-03-13T05:12:41Z) - The Stabilizer Bootstrap of Quantum Machine Learning with up to 10000 qubits [15.344606386620136]
variational quantum circuits could be the leading paradigm in the near-term quantum devices and the early fault-tolerant quantum computers.<n>We use stabilizer bootstrap to optimize quantum neural networks before their quantum execution.<n>We find that, in a general setup of variational ansatze, the possibility of improvements from the stabilizer bootstrap depends on the structure of the observables and the size of the datasets.
arXiv Detail & Related papers (2024-12-16T01:12:00Z) - Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Exploring quantum localization with machine learning [39.58317527488534]
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
arXiv Detail & Related papers (2024-06-01T08:50:26Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.