Attention Mechanisms in Dynamical Systems: A Case Study with Predator-Prey Models
- URL: http://arxiv.org/abs/2505.06503v1
- Date: Sat, 10 May 2025 04:14:28 GMT
- Title: Attention Mechanisms in Dynamical Systems: A Case Study with Predator-Prey Models
- Authors: David Balaban,
- Abstract summary: We train a simple linear attention model on time-series data to reconstruct system trajectories.<n>Remarkably, the learned attention weights align with the geometric structure of the Lyapunov function.<n>Results suggest a novel use of AI-derived attention for interpretable, data-driven analysis and control of nonlinear systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention mechanisms are widely used in artificial intelligence to enhance performance and interpretability. In this paper, we investigate their utility in modeling classical dynamical systems -- specifically, a noisy predator-prey (Lotka-Volterra) system. We train a simple linear attention model on perturbed time-series data to reconstruct system trajectories. Remarkably, the learned attention weights align with the geometric structure of the Lyapunov function: high attention corresponds to flat regions (where perturbations have small effect), and low attention aligns with steep regions (where perturbations have large effect). We further demonstrate that attention-based weighting can serve as a proxy for sensitivity analysis, capturing key phase-space properties without explicit knowledge of the system equations. These results suggest a novel use of AI-derived attention for interpretable, data-driven analysis and control of nonlinear systems. For example our framework could support future work in biological modeling of circadian rhythms, and interpretable machine learning for dynamical environments.
Related papers
- Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics [0.0]
We present a data-driven machine-learning approach for modeling space-time socioeconomic dynamics.
Our findings, from a case study of Baltimore, MD, indicate that this machine learning-augmented coarse-grained model serves as a powerful instrument.
arXiv Detail & Related papers (2024-07-25T15:12:46Z) - Learning System Dynamics without Forgetting [60.08612207170659]
We investigate the problem of Continual Dynamics Learning (CDL), examining task configurations and evaluating the applicability of existing techniques.<n>We propose the Mode-switching Graph ODE (MS-GODE) model, which integrates the strengths LG-ODE and sub-network learning with a mode-switching module.<n>We construct a novel benchmark of biological dynamic systems for CDL, Bio-CDL, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Robust physics discovery via supervised and unsupervised pattern
recognition using the Euler characteristic [5.584060970507507]
Machine learning approaches have been widely used for discovering the underlying physics of dynamical systems from measured data.
Existing approaches, still lack robustness, especially the measured data contain a large level of noise.
In this study, we use an efficient topological descriptor for complex data, ie.temporal characteristics (ECs) as features to characterize the observed data.
arXiv Detail & Related papers (2021-10-15T18:37:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting [11.771843031752269]
We introduce a generic and scalable method to learn latent representations of indirectly observed dynamical systems.
We achieve state-of-the-art performances on systems observed directly from raw images.
arXiv Detail & Related papers (2021-06-22T12:30:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.