Out-of-time-order correlation in the quantum Ising Floquet spin system and magnonic crystals
- URL: http://arxiv.org/abs/2505.07550v1
- Date: Mon, 12 May 2025 13:29:53 GMT
- Title: Out-of-time-order correlation in the quantum Ising Floquet spin system and magnonic crystals
- Authors: Rohit Kumar Shukla,
- Abstract summary: Time-periodic fields are applied in the form of delta pulses in the quantum Ising Floquet spin system.<n>OTOCs can identify the quantum chaos within a system undergoing time evolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent times out-of-time-order correlators (OTOC) have been established as a tool to understand butterfly effects, quantum information scrambling, and many-body localization. They can also be useful in determining different phases of quantum critical systems. OTOCs can identify the quantum chaos within a system undergoing time evolution; and therefore, they can distinguish between chaotic and regular dynamics. This motivates us to study OTOCs in integrable and nonintegrable periodically kicked quantum spin models. A periodically kicked quantum Ising spin system, known as the quantum Ising Floquet system, is a variant of the transverse Ising model. In place of constant transverse magnetic fields in the transverse Ising system, time-periodic fields are applied in the form of delta pulses in the quantum Ising Floquet spin system. It provides very interesting and peculiar dynamics separate from that of the transverse Ising system.
Related papers
- Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Phase transitions, symmetries, and tunneling in Kerr parametric oscillators [37.69303106863453]
We study the onset of ground-state and excited-state quantum phase transitions in KPOs.<n>We identify the critical points associated with quantum phase transitions and analyze their influence on the energy spectrum and tunneling dynamics.<n>Our findings provide insights into the engineering of robust quantum states, quantum dynamics control, and onset of quantum phase transitions with implications for critical quantum sensing.
arXiv Detail & Related papers (2025-04-21T18:00:19Z) - Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.<n>In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.<n>In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - Information scrambling in quantum walks: Discrete-time formulation of Krylov complexity [0.0]
We consider out-of-time-ordered correlators (OTOC) and K-complexity as a probe of information scrambling.
We formulate the K-complexity in system with discrete-time evolution, and show that it grows linearly in discrete-time quantum walk.
arXiv Detail & Related papers (2024-06-09T17:38:50Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Directional scrambling of quantum information in helical multiferroics [0.0]
Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry.
Character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators.
We study and quantify the directionality of quantum information propagation in oxide-based helical spin systems.
arXiv Detail & Related papers (2021-12-20T17:58:19Z) - Time periodicity from randomness in quantum systems [0.0]
Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
arXiv Detail & Related papers (2021-04-27T18:02:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Machine learning time-local generators of open quantum dynamics [18.569079917372736]
In the study of closed many-body quantum systems one is often interested in the evolution of a subset of degrees of freedom.
In the simplest case the evolution of the reduced state of the system is governed by a quantum master equation with a time-independent, i.e. Markovian, generator.
Here we are interested in understanding to which extent a neural network function approximator can predict open quantum dynamics from an underlying unitary dynamics.
arXiv Detail & Related papers (2021-01-21T13:10:01Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Chaotic spin-photonic states in an open periodically modulated quantum
cavity [0.0]
We consider quantum chaotic state emerging in a leaky cavity.
A single spin, when placed inside the cavity and coupled to the mode, can moderate transitions between regular and chaotic regimes.
arXiv Detail & Related papers (2020-05-15T14:47:24Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.