論文の概要: Enhancing Trust Management System for Connected Autonomous Vehicles Using Machine Learning Methods: A Survey
- arxiv url: http://arxiv.org/abs/2505.07882v1
- Date: Sat, 10 May 2025 16:13:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.251392
- Title: Enhancing Trust Management System for Connected Autonomous Vehicles Using Machine Learning Methods: A Survey
- Title(参考訳): 機械学習を用いた接続型自動運転車の信頼管理システムの強化:サーベイ
- Authors: Qian Xu, Lei Zhang, Yixiao Liu,
- Abstract要約: 接続された自律走行車(CAV)は動的、オープン、マルチドメインネットワークで動作し、様々な脅威に対して脆弱である。
機械学習(ML)の最近の進歩は、信頼管理システム(TMS)を強化する大きな可能性を秘めている
本研究では,自動車とクラウドの統合システムにおけるCAVのための新しい3層MLベースのTMSフレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.527561817113207
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Connected Autonomous Vehicles (CAVs) operate in dynamic, open, and multi-domain networks, rendering them vulnerable to various threats. Trust Management Systems (TMS) systematically organize essential steps in the trust mechanism, identifying malicious nodes against internal threats and external threats, as well as ensuring reliable decision-making for more cooperative tasks. Recent advances in machine learning (ML) offer significant potential to enhance TMS, especially for the strict requirements of CAVs, such as CAV nodes moving at varying speeds, and opportunistic and intermittent network behavior. Those features distinguish ML-based TMS from social networks, static IoT, and Social IoT. This survey proposes a novel three-layer ML-based TMS framework for CAVs in the vehicle-road-cloud integration system, i.e., trust data layer, trust calculation layer and trust incentive layer. A six-dimensional taxonomy of objectives is proposed. Furthermore, the principles of ML methods for each module in each layer are analyzed. Then, recent studies are categorized based on traffic scenarios that are against the proposed objectives. Finally, future directions are suggested, addressing the open issues and meeting the research trend. We maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/octoberzzzzz/ML-based-TMS-CAV-Survey.
- Abstract(参考訳): 接続された自律走行車(CAV)は動的、オープン、マルチドメインネットワークで動作し、様々な脅威に対して脆弱である。
トラスト管理システム(TMS)は、内部の脅威や外部の脅威に対して悪意のあるノードを識別し、より協力的なタスクに対する信頼性の高い意思決定を保証する。
機械学習(ML)の最近の進歩は、特に様々な速度で移動するCAVノードや、機会的かつ断続的なネットワーク動作など、CAVの厳格な要求に対して、TMSを強化する大きな可能性を秘めている。
これらの機能はMLベースのTMSとソーシャルネットワーク、静的IoT、ソーシャルIoTを区別する。
本調査では,自動車とクラウドの統合システムである信頼データ層,信頼計算層,信頼インセンティブ層において,CAVのための新しい3層MLベースのTMSフレームワークを提案する。
目的の6次元分類法を提案する。
さらに、各レイヤ内の各モジュールに対するMLメソッドの原則を分析する。
そして,提案した目的に反する交通シナリオに基づいて,近年の研究を分類した。
最後に、オープンな問題に対処し、研究トレンドに適合する今後の方向性を提案する。
我々は、最新の文献とオープンソースプロジェクトを含むアクティブリポジトリをhttps://github.com/octoberzzz/MLベースのTMS-CAV-Surveyで維持しています。
関連論文リスト
- A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
複数の大規模言語モデル(LLM)を信頼性のあるマルチLLMネットワーク(MultiLLMN)に接続するブロックチェーン対応協調フレームワークを提案する。
このアーキテクチャは、複雑なネットワーク最適化問題に対する最も信頼性が高く高品質な応答の協調評価と選択を可能にする。
論文 参考訳(メタデータ) (2025-05-06T05:32:46Z) - Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things [11.185300073739098]
従来の侵入検知システム(IDS)は、IoTネットワークの動的かつ大規模な性質を管理するのに不足することが多い。
本稿では,機械学習(ML)とディープラーニング(DL)技術がIoT環境におけるIDSのパフォーマンスを大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2025-04-09T18:52:15Z) - Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
大型言語モデル(LLM)は、輸送上の課題に対処するための変革的な可能性を提供する。
LLM4TRは,交通におけるLSMの役割を体系的に分類する概念的枠組みである。
それぞれの役割について,交通予測や自律運転,安全分析,都市移動最適化など,さまざまな応用について検討した。
論文 参考訳(メタデータ) (2025-03-27T11:56:27Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
MLLM(Multimodal Large Language Models)は、視覚データとテキストデータの両方を処理する。
構造化されていない知識と構造化されていない知識の両方を取り入れることでMLLMベースの自動運転システムを強化する新しいフレームワークであるSafeAutoを提案する。
論文 参考訳(メタデータ) (2025-02-28T21:53:47Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments [0.0]
ドメインとしてのIoTはここ数年で大きく成長し、データ量だけでなく、サイバーセキュリティの脅威もモバイルネットワーク環境に匹敵している。
IoT環境内のデータの機密性とプライバシは、ここ数年でセキュリティ研究の重要な領域になっている。
ますます多くのセキュリティ専門家が、従来のセキュリティ手法を補完するものとして、IoT環境を保護する堅牢なIDSシステムを設計することに関心を持っている。
論文 参考訳(メタデータ) (2023-06-14T08:48:46Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
最大スループット予測の強化,例えばストリーミングや高精細マッピングアプリケーションについて検討する。
収集したデータの基盤となる特性をよりよく理解することで、マシンラーニング技術上に信頼性を構築することができるかを強調します。
我々は、説明可能なAIを使用して、機械学習が明示的にプログラムされることなく、無線ネットワークの基本原理を学習できることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:29:20Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
悪意のあるサイバー攻撃を識別できる侵入検知システム(IDS)が開発されている。
我々は、LCCDE(Lead Class and Confidence Decision Ensemble)という新しいアンサンブルIDSフレームワークを提案する。
LCCDEは、3つの高度なアルゴリズムの中で最高のパフォーマンスのMLモデルを決定することで構成される。
論文 参考訳(メタデータ) (2022-08-05T22:30:34Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks [0.0]
侵入検知は、ネットワークセキュリティの分野で難しい問題の一つである。
本稿では,従来の機械学習分類アルゴリズムの比較分析を行った。
MLP(Multi-Layer Perception)は入力と出力の間に依存性があり、侵入検知のネットワーク構成に依存している。
論文 参考訳(メタデータ) (2021-11-02T05:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。