論文の概要: Lie Group Symmetry Discovery and Enforcement Using Vector Fields
- arxiv url: http://arxiv.org/abs/2505.08219v1
- Date: Tue, 13 May 2025 04:24:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.421098
- Title: Lie Group Symmetry Discovery and Enforcement Using Vector Fields
- Title(参考訳): ベクトル場を用いたリー群対称性の発見と強化
- Authors: Ben Shaw, Sasidhar Kunapuli, Abram Magner, Kevin R. Moon,
- Abstract要約: 我々は、非アフィン対称性発見の概念をニューラルネットワークによって定義される関数に拡張する。
ベクトル場を用いた滑らかなモデルの対称性強制を導入する。
- 参考スコア(独自算出の注目度): 4.212344009251363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symmetry-informed machine learning can exhibit advantages over machine learning which fails to account for symmetry. Additionally, recent attention has been given to continuous symmetry discovery using vector fields which serve as infinitesimal generators for Lie group symmetries. In this paper, we extend the notion of non-affine symmetry discovery to functions defined by neural networks. We further extend work in this area by introducing symmetry enforcement of smooth models using vector fields. Finally, we extend work on symmetry discovery using vector fields by providing both theoretical and experimental material on the restriction of the symmetry search space to infinitesimal isometries.
- Abstract(参考訳): 対称性インフォームド機械学習は、対称性を考慮に入れない機械学習よりも優位性を示すことができる。
さらに、近年、リー群対称性の無限小生成体として機能するベクトル場を用いた連続対称性発見に注意が向けられている。
本稿では,非アフィン対称性発見の概念をニューラルネットワークによって定義される関数に拡張する。
ベクトル場を用いた滑らかなモデルの対称性の強制を導入することにより、この分野の作業をさらに拡張する。
最後に、ベクトル場を用いた対称性発見の研究を、対称性探索空間を無限小等距離に制限する理論材料と実験材料の両方を提供することによって拡張する。
関連論文リスト
- Latent Space Symmetry Discovery [31.28537696897416]
本稿では,非線形群作用の対称性を発見できる新しい生成モデルであるLatent LieGANを提案する。
本モデルでは,群作用に関する条件下で非線形対称性を表現できることが示されている。
LaLiGANはまた、方程式発見や長期予測を含む下流のタスクに有用な構造化された潜在空間をもたらす。
論文 参考訳(メタデータ) (2023-09-29T19:33:01Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
このレターでは、対称性変換の発見を著しく高速化する2つの改良されたアルゴリズムを紹介している。
例外的リー群の複雑性を考えると,この機械学習手法は完全に汎用的であり,多種多様なラベル付きデータセットに適用可能であることを示す。
論文 参考訳(メタデータ) (2023-07-10T20:25:44Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - Machine-learning hidden symmetries [0.0]
本稿では,新しい座標系にのみ現れる隠れ対称性を自動検出する手法を提案する。
その中心となる考え方は、ある偏微分方程式の違反として非対称性を定量化し、すべての可逆変換の空間上のそのような違反を数値的に最小化し、可逆ニューラルネットワークとしてパラメータ化することである。
論文 参考訳(メタデータ) (2021-09-20T17:55:02Z) - Symmetry Breaking in Symmetric Tensor Decomposition [44.181747424363245]
我々は、対称テンソルの点階分解を計算する非対称問題を考える。
損失関数の臨界点が標準手法によって検出されることを示す。
論文 参考訳(メタデータ) (2021-03-10T18:11:22Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
我々は微分幾何学からのツールと洞察を用いて、直交rnnの新しい視点を提供する。
直交RNNは、発散自由ベクトル場の空間における最適化と見なすことができる。
この観測に動機づけられて、ベクトル場全体の空間にまたがる新しいリカレントモデルの研究を行う。
論文 参考訳(メタデータ) (2021-02-18T19:39:22Z) - Finding Symmetry Breaking Order Parameters with Euclidean Neural
Networks [2.735801286587347]
我々は、対称性同変ニューラルネットワークがキュリーの原理を支持し、多くの対称性関連科学的な疑問を単純な最適化問題に表すのに使用できることを示した。
これらの特性を数学的に証明し、ユークリッド対称性同変ニューラルネットワークを訓練し、対称性を破る入力を学習し、正方形を長方形に変形させ、ペロブスカイトのオクタヘドラ傾斜パターンを生成する。
論文 参考訳(メタデータ) (2020-07-04T17:24:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。