論文の概要: AI-Mediated Code Comment Improvement
- arxiv url: http://arxiv.org/abs/2505.09021v1
- Date: Tue, 13 May 2025 23:31:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.322028
- Title: AI-Mediated Code Comment Improvement
- Title(参考訳): AIによるコードコメントの改善
- Authors: Maria Dhakal, Chia-Yi Su, Robert Wallace, Chris Fakhimi, Aakash Bansal, Toby Li, Yu Huang, Collin McMillan,
- Abstract要約: 本稿では,Large Language Model (LLM) を用いて,既存のコードコメントを品質軸に沿って書き直す手順を提案する。
GPT-4oを用いて処理を行い、その結果を社内で実行可能なより小さなモデルに分解する。
提案手法が品質軸に沿ったコードコメントをどのように改善するかを評価する。
- 参考スコア(独自算出の注目度): 3.4849829766701323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes an approach to improve code comments along different quality axes by rewriting those comments with customized Artificial Intelligence (AI)-based tools. We conduct an empirical study followed by grounded theory qualitative analysis to determine the quality axes to improve. Then we propose a procedure using a Large Language Model (LLM) to rewrite existing code comments along the quality axes. We implement our procedure using GPT-4o, then distil the results into a smaller model capable of being run in-house, so users can maintain data custody. We evaluate both our approach using GPT-4o and the distilled model versions. We show in an evaluation how our procedure improves code comments along the quality axes. We release all data and source code in an online repository for reproducibility.
- Abstract(参考訳): 本稿では、AI(Artificial Intelligence)ベースのツールでそれらのコメントを書き換えることで、異なる品質軸に沿ったコードコメントを改善するアプローチについて述べる。
実験により, 改良すべき品質軸を決定するために, 基礎理論定性的解析を行った。
次に、LLM(Large Language Model)を用いて、既存のコードコメントを品質軸に沿って書き直す手順を提案する。
我々は、GPT-4oを使用して処理を実行し、その処理結果を内部で実行可能な小さなモデルに分解することで、ユーザはデータ保持を維持できる。
GPT-4oと蒸留モデルを用いて本手法の評価を行った。
提案手法が品質軸に沿ったコードコメントをどのように改善するかを評価する。
再現性のために、すべてのデータとソースコードをオンラインリポジトリにリリースします。
関連論文リスト
- ACE-RLHF: Automated Code Evaluation and Socratic Feedback Generation Tool using Large Language Models and Reinforcement Learning with Human Feedback [4.503215272392276]
コードフィードバック生成のための大規模言語モデル(LLM)が不可欠である。
LLMはコンパイラが生成したエラーメッセージよりも理解しやすいフィードバックを生成する。
Reinforcement Learning with Human Feedback (RLHF)は、初心者の生徒がスクラッチから対話的にプログラミングをリーン化するのに役立つ。
論文 参考訳(メタデータ) (2025-04-07T01:11:22Z) - On Iterative Evaluation and Enhancement of Code Quality Using GPT-4o [1.5960340244043023]
本稿では,Large Language Models (LLM) を利用したコード品質の反復評価と向上のための新しいフレームワークであるCodeQUESTを紹介する。
フレームワークは2つの主要なコンポーネントに分割されている。10次元にわたるコード品質を評価し、定量スコアと定性的な要約の両方を提供する評価器。
本研究は,CodeQUESTが既存のコード品質指標と整合して,コード品質を効果的かつ堅牢に評価できることを実証する。
論文 参考訳(メタデータ) (2025-02-11T09:27:00Z) - Too Noisy To Learn: Enhancing Data Quality for Code Review Comment Generation [2.990411348977783]
オープンソースのデータセットは、自動コードレビュータスクのためのニューラルネットワークのトレーニングに使用される。
これらのデータセットには、クリーニングメソッドにもかかわらず持続する大量のノイズの多いコメントが含まれている。
大規模言語モデル(LLM)を用いて,これらのデータセットをさらにクリーン化する手法を提案する。
論文 参考訳(メタデータ) (2025-02-04T22:48:58Z) - Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-23T08:06:06Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - AI-powered Code Review with LLMs: Early Results [10.37036924997437]
本稿では,Large Language Model (LLM) ベースのモデルを用いて,ソフトウェアの品質と効率を改善する新しい手法を提案する。
提案するLLMベースのAIエージェントモデルは,大規模コードリポジトリ上でトレーニングされている。
コードの臭いを検出し、潜在的なバグを特定し、改善の提案を提供し、コードを最適化することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T08:27:50Z) - Improving the Learning of Code Review Successive Tasks with Cross-Task
Knowledge Distillation [1.0878040851638]
本研究では,これらのタスクを同時に処理するために,クロスタスク知識蒸留を利用した新しいディープラーニングアーキテクチャdisCOREVを紹介する。
提案手法は, BLEUスコアによる評価値と, CodeBLEUスコアによるより正確なコード修正値から, より良いレビューコメントを生成する。
論文 参考訳(メタデータ) (2024-02-03T07:02:22Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Quality-Aware Decoding for Neural Machine Translation [64.24934199944875]
ニューラルネットワーク翻訳(NMT)のための品質認識復号法を提案する。
参照フリーおよび参照ベースMT評価における最近のブレークスルーを,様々な推論手法を用いて活用する。
品質認識復号化は、最先端の自動測定値と人的評価値の両方で、MAPベースの復号化を一貫して上回ります。
論文 参考訳(メタデータ) (2022-05-02T15:26:28Z) - SummEval: Re-evaluating Summarization Evaluation [169.622515287256]
総合的かつ一貫した方法で14の自動評価指標を再評価する。
上記の自動評価指標を用いて,最近の要約モデル23をベンチマークした。
我々は、CNN/DailyMailニュースデータセットでトレーニングされたモデルによって生成された最大の要約コレクションを組み立てる。
論文 参考訳(メタデータ) (2020-07-24T16:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。