論文の概要: A Surrogate Model for the Forward Design of Multi-layered Metasurface-based Radar Absorbing Structures
- arxiv url: http://arxiv.org/abs/2505.09251v1
- Date: Wed, 14 May 2025 09:54:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.411714
- Title: A Surrogate Model for the Forward Design of Multi-layered Metasurface-based Radar Absorbing Structures
- Title(参考訳): 多層地表面レーダ吸収構造の前方設計のためのサロゲートモデル
- Authors: Vineetha Joy, Aditya Anand, Nidhi, Anshuman Kumar, Amit Sethi, Hema Singh,
- Abstract要約: 本稿では,多層準曲面RASの電磁(EM)応答の予測を著しく高速化する代理モデルを提案する。
提案したモデルは、99.9%のコサイン類似性を達成し、平均2乗誤差は1000エポック内の0.001である。
- 参考スコア(独自算出の注目度): 3.328784252410173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metasurface-based radar absorbing structures (RAS) are highly preferred for applications like stealth technology, electromagnetic (EM) shielding, etc. due to their capability to achieve frequency selective absorption characteristics with minimal thickness and reduced weight penalty. However, the conventional approach for the EM design and optimization of these structures relies on forward simulations, using full wave simulation tools, to predict the electromagnetic (EM) response of candidate meta atoms. This process is computationally intensive, extremely time consuming and requires exploration of large design spaces. To overcome this challenge, we propose a surrogate model that significantly accelerates the prediction of EM responses of multi-layered metasurface-based RAS. A convolutional neural network (CNN) based architecture with Huber loss function has been employed to estimate the reflection characteristics of the RAS model. The proposed model achieved a cosine similarity of 99.9% and a mean square error of 0.001 within 1000 epochs of training. The efficiency of the model has been established via full wave simulations as well as experiment where it demonstrated significant reduction in computational time while maintaining high predictive accuracy.
- Abstract(参考訳): 準曲面型レーダー吸収構造(RAS)は、最小の厚さと軽量化による周波数選択吸収特性を達成する能力により、ステルス技術や電磁シールドなどの用途に好まれる。
しかし、これらの構造をEM設計・最適化するための従来の手法は、完全な波動シミュレーションツールを用いて、候補となるメタ原子の電磁(EM)応答を予測するフォワードシミュレーションに依存している。
このプロセスは計算集約的で、非常に時間がかかり、大きな設計空間を探索する必要がある。
この課題を克服するために,多層準曲面RASのEM応答の予測を著しく高速化する代理モデルを提案する。
A convolutional Neural Network (CNN) based architecture with Huber loss function has been used to estimated the reflection characteristics of the RAS model。
提案したモデルは、99.9%のコサイン類似性を達成し、平均2乗誤差は1000エポック内の0.001である。
モデルの有効性は、完全な波動シミュレーションと、高い予測精度を維持しながら計算時間を大幅に短縮する実験によって確立されている。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたソフトウェアスパイクニューラルネットワークシミュレータである。
得られた結果が,ソフトウェアでトレーニングされたスパイクニューラルネットワークの動作を,かつてハードウェアにデプロイされた場合の信頼性の高い推定方法を示す。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows [0.0]
マルチオブザーバブル・ダイナミックモード分解(MODMD)の枠組みを紹介する。
我々は、典型的なアダマールテスト回路を、低ランクの可観測性を予測するために設計されたプロトコルに置き換える。
我々の研究は、短期および早期の耐故障性量子デバイス上での測定駆動アルゴリズムを効率的に設計するための道を開く。
論文 参考訳(メタデータ) (2024-09-20T17:59:56Z) - Physics-Informed Machine Learning Towards A Real-Time Spacecraft Thermal Simulator [15.313871831214902]
ここで提示されるPIMLモデルまたはハイブリッドモデルは、軌道上の熱負荷条件によって与えられるノイズの低減を予測するニューラルネットワークで構成されている。
我々は,ハイブリッドモデルの計算性能と精度を,データ駆動型ニューラルネットモデルと,地球周回小型宇宙船の高忠実度有限差分モデルと比較した。
PIMLベースのアクティブノダライゼーションアプローチは、ニューラルネットワークモデルや粗いメッシュモデルよりもはるかに優れた一般化を提供すると同時に、高忠実度モデルと比較して計算コストを最大1.7倍削減する。
論文 参考訳(メタデータ) (2024-07-08T16:38:52Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - Modeling Scattering Coefficients using Self-Attentive Complex
Polynomials with Image-based Representation [26.6996054977643]
与えられた2次元平面アンテナ設計の周波数領域における散乱係数を直接推定するために, CZP と命名されたサンプル効率で正確な代理モデルを提案する。
我々は、CZPが試験損失の点でベースラインを上回るだけでなく、商用ソフトウェアで検証可能な2次元アンテナの設計も見出すことができることを示した。
論文 参考訳(メタデータ) (2023-01-06T23:32:07Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。