A Hybrid Quantum-Classical Particle-in-Cell Method for Plasma Simulations
- URL: http://arxiv.org/abs/2505.09260v1
- Date: Wed, 14 May 2025 10:19:33 GMT
- Title: A Hybrid Quantum-Classical Particle-in-Cell Method for Plasma Simulations
- Authors: Pratibha Raghupati Hegde, Paolo Marcandelli, Yuanchun He, Luca Pennati, Jeremy J. Williams, Ivy Peng, Stefano Markidis,
- Abstract summary: The electrostatic field Poisson solver is implemented on a quantum computer simulator using a hybrid classical-quantum Neural Network (HNN)<n>The HNN is trained on classical PIC simulation results and executed via a PennyLane quantum simulator.<n>We test the hybrid quantum-classical electrostatic PIC against the two-stream instability, a standard benchmark in plasma physics.
- Score: 2.0243676839636593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid quantum-classical electrostatic Particle-in-Cell (PIC) method, where the electrostatic field Poisson solver is implemented on a quantum computer simulator using a hybrid classical-quantum Neural Network (HNN) using data-driven and physics-informed learning approaches. The HNN is trained on classical PIC simulation results and executed via a PennyLane quantum simulator. The remaining computational steps, including particle motion and field interpolation, are performed on a classical system. To evaluate the accuracy and computational cost of this hybrid approach, we test the hybrid quantum-classical electrostatic PIC against the two-stream instability, a standard benchmark in plasma physics. Our results show that the quantum Poisson solver achieves comparable accuracy to classical methods. It also provides insights into the feasibility of using quantum computing and HNNs for plasma simulations. We also discuss the computational overhead associated with current quantum computer simulators, showing the challenges and potential advantages of hybrid quantum-classical numerical methods.
Related papers
- Quantum walk based Monte Carlo simulation for photon interaction cross sections [4.764631050395652]
High-energy physics simulations traditionally rely on classical Monte Carlo methods to model complex particle interactions.<n>We introduce a novel quantum-enhanced simulation framework that integrates discrete-time quantum walks with quantum amplitude estimation.
arXiv Detail & Related papers (2025-02-20T09:05:37Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Simulating electronic structure on bosonic quantum computers [34.84696943963362]
We propose an approach to map the electronic Hamiltonian into a qumode bosonic problem that can be solved on bosonic quantum devices.<n>This work establishes a new pathway for simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Hybrid Quantum-Classical Algorithm for Hydrodynamics [0.0]
A new model of nonlinear charged quantum relativistic fluids is presented.
The model can be discretized into Discrete Time Quantum Walks (DTQWs)
A new hybrid (quantum-classical) algorithm is proposed for implementing these walks on NISQ devices.
arXiv Detail & Related papers (2022-02-02T08:46:35Z) - Estimating Phosphorescent Emission Energies in Ir(III) Complexes using
Large-Scale Quantum Computing Simulations [0.0]
We apply the iterative qubit coupled cluster (iQCC) method on classical hardware to the calculation of the transition energies in nine phosphorescent iridium complexes.
Our simulations would require a gate-based quantum computer with a minimum of 72 fully-connected and error-corrected logical qubits.
The iQCC quantum method is found to match the accuracy of the fine-tuned DFT functionals, has a better Pearson correlation coefficient, and still has considerable potential for systematic improvement.
arXiv Detail & Related papers (2021-11-07T20:02:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Doubling the size of quantum simulators by entanglement forging [2.309018557701645]
Quantum computers are promising for simulations of chemical and physical systems.
We present a method, classical entanglement forging, that harnesses classical resources to capture quantum correlations.
We compute the ground state energy of a water molecule in the most accurate simulation to date.
arXiv Detail & Related papers (2021-04-20T19:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.