MUST: Multi-Scale Structural-Temporal Link Prediction Model for UAV Ad Hoc Networks
- URL: http://arxiv.org/abs/2505.09331v1
- Date: Wed, 14 May 2025 12:26:46 GMT
- Title: MUST: Multi-Scale Structural-Temporal Link Prediction Model for UAV Ad Hoc Networks
- Authors: Cunlai Pu, Fangrui Wu, Rajput Ramiz Sharafat, Guangzhao Dai, Xiangbo Shu,
- Abstract summary: Link prediction in unmanned aerial vehicle (UAV) ad hoc networks (UANETs) aims to predict the potential formation of future links between UAVs.<n>In adversarial environments where the route information of UAVs is unavailable, predicting future links must rely solely on the observed historical topological information of UANETs.<n>We propose a multi-scale structural-temporal link prediction model (MUST) for UANETs.
- Score: 14.111475464877563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction in unmanned aerial vehicle (UAV) ad hoc networks (UANETs) aims to predict the potential formation of future links between UAVs. In adversarial environments where the route information of UAVs is unavailable, predicting future links must rely solely on the observed historical topological information of UANETs. However, the highly dynamic and sparse nature of UANET topologies presents substantial challenges in effectively capturing meaningful structural and temporal patterns for accurate link prediction. Most existing link prediction methods focus on temporal dynamics at a single structural scale while neglecting the effects of sparsity, resulting in insufficient information capture and limited applicability to UANETs. In this paper, we propose a multi-scale structural-temporal link prediction model (MUST) for UANETs. Specifically, we first employ graph attention networks (GATs) to capture structural features at multiple levels, including the individual UAV level, the UAV community level, and the overall network level. Then, we use long short-term memory (LSTM) networks to learn the temporal dynamics of these multi-scale structural features. Additionally, we address the impact of sparsity by introducing a sophisticated loss function during model optimization. We validate the performance of MUST using several UANET datasets generated through simulations. Extensive experimental results demonstrate that MUST achieves state-of-the-art link prediction performance in highly dynamic and sparse UANETs.
Related papers
- Topology-Aware Conformal Prediction for Stream Networks [54.505880918607296]
We propose Spatio-Temporal Adaptive Conformal Inference (textttCISTA), a novel framework that integrates network topology and temporal dynamics into the conformal prediction framework.<n>Our results show that textttCISTA effectively balances prediction efficiency and coverage, outperforming existing conformal prediction methods for stream networks.
arXiv Detail & Related papers (2025-03-06T21:21:15Z) - Predictive Covert Communication Against Multi-UAV Surveillance Using Graph Koopman Autoencoder [27.178522837149053]
Low Probability of Detection (LPD) communication aims to obscure the presence of radio frequency (RF) signals to evade surveillance.
accurately predicting future locations of UAVs is essential for enabling real-time LPD communication.
We introduce a novel framework termed predictive covert communication, aimed at minimizing detectability in terrestrial ad-hoc networks under multi-UAV surveillance.
arXiv Detail & Related papers (2024-09-25T16:02:45Z) - Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
We introduce a self-supervised method for learning representations of temporal networks.
We propose a recurrent message-passing neural network architecture for modeling the information flow over time-respecting paths of temporal networks.
The proposed method is tested on Enron, COLAB, and Facebook datasets.
arXiv Detail & Related papers (2024-08-22T22:50:46Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
Current research on Spatio-Temporal Graph Neural Networks (STGNNs) often prioritizes complex designs, leading to computational burdens with only minor enhancements in accuracy.
We propose ST-MLP, a concise cascaded temporal-temporal model solely based on Multi-Layer Perceptron (MLP) modules and linear layers.
Empirical results demonstrate that ST-MLP outperforms state-of-the-art STGNNs and other models in terms of accuracy and computational efficiency.
arXiv Detail & Related papers (2023-08-14T23:34:59Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
This study proposes a new spatial-temporal neural network architecture to handle the long-term traffic parameters forecasting issue.
The attention mechanism potentially guarantees long-term prediction performance without significant information loss from distant inputs.
arXiv Detail & Related papers (2022-10-01T05:58:22Z) - STG-GAN: A spatiotemporal graph generative adversarial networks for
short-term passenger flow prediction in urban rail transit systems [11.167132464665578]
Short-term passenger flow prediction is an important but challenging task for better managing urban rail transit systems.
We propose a novel deep learning-basedtemporal graph generative adversarial network (STG-GAN) model with higher prediction accuracy, higher efficiency, and lower memory occupancy.
This study can provide critical experience in conducting short-term passenger flow predictions, especially from the perspective of real-world applications.
arXiv Detail & Related papers (2022-02-10T13:18:11Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications.
It is impractical to send raw data of devices to UAV servers for model training.
In this paper, we develop an asynchronous federated learning framework for multi-UAV-enabled networks.
arXiv Detail & Related papers (2020-11-28T18:58:34Z) - TSAM: Temporal Link Prediction in Directed Networks based on
Self-Attention Mechanism [2.5144068869465994]
We propose a deep learning model based on graph neural networks (GCN) and self-attention mechanism, namely TSAM.
We run comparative experiments on four realistic networks to validate the effectiveness of TSAM.
arXiv Detail & Related papers (2020-08-23T11:56:40Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.