Demonstration of low-overhead quantum error correction codes
- URL: http://arxiv.org/abs/2505.09684v1
- Date: Wed, 14 May 2025 18:00:02 GMT
- Title: Demonstration of low-overhead quantum error correction codes
- Authors: Ke Wang, Zhide Lu, Chuanyu Zhang, Gongyu Liu, Jiachen Chen, Yanzhe Wang, Yaozu Wu, Shibo Xu, Xuhao Zhu, Feitong Jin, Yu Gao, Ziqi Tan, Zhengyi Cui, Ning Wang, Yiren Zou, Aosai Zhang, Tingting Li, Fanhao Shen, Jiarun Zhong, Zehang Bao, Zitian Zhu, Yihang Han, Yiyang He, Jiayuan Shen, Han Wang, Jia-Nan Yang, Zixuan Song, Jinfeng Deng, Hang Dong, Zheng-Zhi Sun, Weikang Li, Qi Ye, Si Jiang, Yixuan Ma, Pei-Xin Shen, Pengfei Zhang, Hekang Li, Qiujiang Guo, Zhen Wang, Chao Song, H. Wang, Dong-Ling Deng,
- Abstract summary: We demonstrate low-overhead quantum low-density parity-check (qLDPC) codes on our latest superconducting processor, Kunlun, featuring 32 long-range-coupled transmon qubits.<n>Our results establish the feasibility of implementing various qLDPC codes with long-range coupled superconducting processors.
- Score: 18.9093114738654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers hold the potential to surpass classical computers in solving complex computational problems. However, the fragility of quantum information and the error-prone nature of quantum operations make building large-scale, fault-tolerant quantum computers a prominent challenge. To combat errors, pioneering experiments have demonstrated a variety of quantum error correction codes. Yet, most of these codes suffer from low encoding efficiency, and their scalability is hindered by prohibitively high resource overheads. Here, we report the demonstration of two low-overhead quantum low-density parity-check (qLDPC) codes, a distance-4 bivariate bicycle code and a distance-3 qLDPC code, on our latest superconducting processor, Kunlun, featuring 32 long-range-coupled transmon qubits. Utilizing a two-dimensional architecture with overlapping long-range couplers, we demonstrate simultaneous measurements of all nonlocal weight-6 stabilizers via the periodic execution of an efficient syndrome extraction circuit. We achieve a logical error rate per logical qubit per cycle of $(8.91 \pm 0.17)\%$ for the distance-4 bivariate bicycle code with four logical qubits and $(7.77 \pm 0.12)\%$ for the distance-3 qLDPC code with six logical qubits. Our results establish the feasibility of implementing various qLDPC codes with long-range coupled superconducting processors, marking a crucial step towards large-scale low-overhead quantum error correction.
Related papers
- Directional Codes: a new family of quantum LDPC codes on hexagonal- and square-grid connectivity hardware [0.0]
Utility-scale quantum computing requires quantum error correction (QEC) to protect quantum information against noise.<n>Currently, superconducting hardware is a promising candidate for achieving fault tolerance due to its fast gate times and feasible scalability.<n>We construct a new family of qLDPC codes, which outperforms the rotated planar code (RPC)<n>We numerically evaluate the performance of directional codes, encoding four, six and twelve logical qubits.
arXiv Detail & Related papers (2025-07-25T16:57:21Z) - Quantum LDPC codes for erasure-biased atomic quantum processors [0.0]
Quantum Low-Density Parity-Check (LDPC) codes have been recently shown to provide a path towards fault-tolerant quantum computing.<n>We demonstrate that when the dominant errors are erasures, quantum LDPC codes additionally provide high thresholds and even stronger logical error suppression.
arXiv Detail & Related papers (2025-02-27T15:23:40Z) - Optimizing compilation of error correction codes for 2xN quantum dot arrays and its NP-hardness [2.7817719859314263]
Hardware-specific error correction codes can achieve fault-tolerance while respecting other constraints.<n>Recent advancements have demonstrated the shuttling of electron and hole spin qubits through a quantum dot array with high fidelity.<n>We develop a suite of methods for compiling any stabilizer error-correcting code's syndrome-extraction circuit to run with a minimal number of shuttling operations.
arXiv Detail & Related papers (2025-01-15T19:00:00Z) - Demonstrating dynamic surface codes [118.67046728951689]
We experimentally demonstrate three time-dynamic implementations of the surface code.<n>First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three.<n>Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors.<n>Third, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead.
arXiv Detail & Related papers (2024-12-18T21:56:50Z) - Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Logical quantum processor based on reconfigurable atom arrays [27.489364850707926]
We report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits.
Results herald the advent of early error-corrected quantum computation.
arXiv Detail & Related papers (2023-12-07T01:54:45Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
We propose a circuit based on the minimal distance-3 QEC code, which requires only 5 data qubits and 5 ancilla qubits.
Thanks to its smaller footprint, the proposed code has a lower logical error rate than Surface-17 for similar physical error rates.
arXiv Detail & Related papers (2021-07-14T05:29:59Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.