Ontology-Based Structuring and Analysis of North Macedonian Public Procurement Contracts
- URL: http://arxiv.org/abs/2505.09798v1
- Date: Wed, 14 May 2025 20:51:26 GMT
- Title: Ontology-Based Structuring and Analysis of North Macedonian Public Procurement Contracts
- Authors: Bojan Ristov, Stefan Eftimov, Milena Trajanoska, Dimitar Trajanov,
- Abstract summary: This research presents a methodological framework for transforming structured procurement data into a semantic knowledge graph.<n>The system enhances the accessibility and interpretability of procurement records, enabling complex semantic queries and advanced analytics.
- Score: 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public procurement plays a critical role in government operations, ensuring the efficient allocation of resources and fostering economic growth. However, traditional procurement data is often stored in rigid, tabular formats, limiting its analytical potential and hindering transparency. This research presents a methodological framework for transforming structured procurement data into a semantic knowledge graph, leveraging ontological modeling and automated data transformation techniques. By integrating RDF and SPARQL-based querying, the system enhances the accessibility and interpretability of procurement records, enabling complex semantic queries and advanced analytics. Furthermore, by incorporating machine learning-driven predictive modeling, the system extends beyond conventional data analysis, offering insights into procurement trends and risk assessment. This work contributes to the broader field of public procurement intelligence by improving data transparency, supporting evidence-based decision-making, and enabling in-depth analysis of procurement activities in North Macedonia.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Deep Learning, Machine Learning, Advancing Big Data Analytics and Management [26.911181864764117]
Advances in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management.<n>This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies.<n>It equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics.
arXiv Detail & Related papers (2024-12-03T05:59:34Z) - An AI-Driven Data Mesh Architecture Enhancing Decision-Making in Infrastructure Construction and Public Procurement [1.4843690728082002]
We introduce an integrated software ecosystem utilizing Data Mesh and Service Mesh architectures.<n>This system includes the largest training dataset for infrastructure and procurement, encompassing over 100 billion tokens.<n>Its web-scalable architecture delivers domain-curated information, enabling AI agents to facilitate reasoning and manage uncertainties.
arXiv Detail & Related papers (2024-11-29T19:33:51Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - A Novel Framework for Analyzing Structural Transformation in Data-Constrained Economies Using Bayesian Modeling and Machine Learning [0.0]
The shift from agrarian economies to more diversified industrial and service-based systems is a key driver of economic development.
In low- and middle-income countries (LMICs), data scarcity and unreliability hinder accurate assessments of this process.
This paper presents a novel statistical framework designed to address these challenges by integrating Bayesian hierarchical modeling, machine learning-based data imputation, and factor analysis.
arXiv Detail & Related papers (2024-09-25T08:39:41Z) - Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data [0.0]
The ability to extract actionable insights from vast and varied datasets is essential for informed decision-making and maintaining a competitive edge.
Traditional rule-based systems, while reliable, often fall short when faced with the complexity and dynamism of modern business data.
This paper explores the efficacy of hybrid approaches that integrate the robustness of rule-based systems with the adaptive power of Large Language Models.
arXiv Detail & Related papers (2024-04-24T02:42:24Z) - Long Short-Term Memory Pattern Recognition in Currency Trading [0.0]
Wyckoff Phases is a framework devised by Richard D. Wyckoff in the early 20th century.
The research explores the phases of trading range and secondary test, elucidating their significance in understanding market dynamics.
By dissecting the intricacies of these phases, the study sheds light on the creation of liquidity through market structure.
The study highlights the transformative potential of AI-driven approaches in financial analysis and trading strategies.
arXiv Detail & Related papers (2024-02-23T12:59:49Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
This contribution proposes a novel approach that interprets machine-learning models through the lens of feature space transformations.
It can be used to enhance unconditional as well as conditional post-hoc diagnostic tools.
A case study on remote-sensing landcover classification with 46 features is used to demonstrate the potential of the proposed approach.
arXiv Detail & Related papers (2021-04-09T10:48:11Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
Using a public and a novel proprietary data set of commercial data, this research shows that the proposed system enables analysts to both cluster their user base and plan demand at a granular level.
This work seeks to introduce TDA-based clustering of time series and clusterwise regression with matrix factorization methods as viable tools for the practitioner.
arXiv Detail & Related papers (2020-09-08T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.