論文の概要: Schreier-Coset Graph Propagation
- arxiv url: http://arxiv.org/abs/2505.10392v1
- Date: Thu, 15 May 2025 15:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.376844
- Title: Schreier-Coset Graph Propagation
- Title(参考訳): Schreier-Cosetグラフの伝播
- Authors: Aryan Mishra, Lizhen Lin,
- Abstract要約: この研究は、入力グラフトポロジを変更することなく、Schrier-Coset 埋め込みを通じてノード特徴を豊かにするグループ理論拡張法であるSchrier-Coset Graph Propagation (SCGP)を導入している。
SCGPはボトルネックのない接続パターンをコンパクトな特徴空間に埋め込み、計算効率を維持しながら長距離メッセージパッシングを改善する。
- 参考スコア(独自算出の注目度): 1.1126342180866644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) offer a principled framework for learning over graph-structured data, yet their expressive capacity is often hindered by over-squashing, wherein information from distant nodes is compressed into fixed-size vectors. Existing solutions, including graph rewiring and bottleneck-resistant architectures such as Cayley and expander graphs, avoid this problem but introduce scalability bottlenecks. In particular, the Cayley graphs constructed over $SL(2,\mathbb{Z}_n)$ exhibit strong theoretical properties, yet suffer from cubic node growth $O(n^3)$, leading to high memory usage. To address this, this work introduces Schrier-Coset Graph Propagation (SCGP), a group-theoretic augmentation method that enriches node features through Schreier-coset embeddings without altering the input graph topology. SCGP embeds bottleneck-free connectivity patterns into a compact feature space, improving long-range message passing while maintaining computational efficiency. Empirical evaluations across standard node and graph classification benchmarks demonstrate that SCGP achieves performance comparable to, or exceeding, expander graph and rewired GNN baselines. Furthermore, SCGP exhibits particular advantages in processing hierarchical and modular graph structures, offering reduced inference latency, improved scalability, and a low memory footprint, making it suitable for real-time and resource-constrained applications.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するための原則化されたフレームワークを提供するが、その表現能力はオーバースカッシングによって妨げられ、遠方のノードからの情報は固定サイズのベクトルに圧縮される。
グラフのリウィリングや、ケイリーや拡張グラフのようなボトルネック耐性のあるアーキテクチャを含む既存のソリューションは、この問題を避けるが、スケーラビリティのボトルネックを導入する。
特に、$SL(2,\mathbb{Z}_n) 上に構築されたケイリーグラフは、強い理論的性質を示すが、立方ノードの増大に悩まされ、高いメモリ使用率をもたらす。
これを解決するために、入力グラフトポロジを変更することなくSchrier-Coset Graph Propagation (SCGP)を導入する。
SCGPはボトルネックのない接続パターンをコンパクトな特徴空間に埋め込み、計算効率を維持しながら長距離メッセージパッシングを改善する。
標準ノードとグラフ分類ベンチマークによる実証的な評価では、SCGPは、拡張グラフと再配線GNNベースラインに匹敵する、あるいは超えるパフォーマンスを達成する。
さらに、SCGPは階層的なグラフ構造とモジュラーグラフ構造の処理において特に利点があり、推論遅延の低減、スケーラビリティの向上、メモリフットプリントの低さを実現し、リアルタイムおよびリソース制約のあるアプリケーションに適している。
関連論文リスト
- RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - Efficient Graph Condensation via Gaussian Process [11.304327316816561]
グラフ凝縮は、性能を維持しながら大きなグラフのサイズを減らす。
既存の手法はしばしば二段階最適化に依存しており、広範囲なGNNトレーニングとスケーラビリティの制限を必要とする。
本稿では,ガウス過程を用いたグラフ凝縮法(GCGP)を提案する。
論文 参考訳(メタデータ) (2025-01-05T14:43:07Z) - Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
グラフ凝縮は、大規模原グラフのコンパクトで代替的なグラフを合成するための有望な解である。
本稿では、自己教師型代理タスクを取り入れたCTGC(Contrastive Graph Condensation)を導入し、元のグラフから批判的、因果的な情報を抽出する。
CTGCは、様々な下流タスクを限られたラベルで処理し、一貫して最先端のGCメソッドより優れている。
論文 参考訳(メタデータ) (2024-11-26T03:01:22Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
高次グラフ(HDG)上のグラフニューラルネットワーク(GNN)のための効率的かつ効果的なフロントマウントデータ拡張フレームワークであるTADを提案する。
内部では、(i)構造埋め込みによる機能拡張と(ii)トポロジと属性対応グラフのスパース化という、2つの重要なモジュールが含まれている。
TADAは、ノード分類の観点から8つの実ホモ親和性/ヘテロ親和性HDG上でのメインストリームGNNモデルの予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-08T14:14:19Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。