HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems
- URL: http://arxiv.org/abs/2505.13516v1
- Date: Sat, 17 May 2025 04:14:03 GMT
- Title: HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems
- Authors: Zhipeng Hou, Junyi Tang, Yipeng Wang,
- Abstract summary: We introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture.<n>Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution.<n>As the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts.
- Score: 1.1930434318557155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have demonstrated tremendous potential in diverse task scenarios. Nonetheless, existing agentic systems typically rely on predefined agent-role design spaces and static communication structures, limiting their adaptability as well as flexibility in complex interaction environments and leading to subpar performance on highly specialized and expert-level tasks. To address these issues, we introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture. Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution. Particularly, subtask execution is reformulated as a structured workflow search problem, where Monte Carlo Tree Search (MCTS) systematically explores the agentic action space to construct optimal reasoning trajectories. Additionally, as the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts. Empirical evaluations on Code Generation (HumanEval), General Reasoning (MMLU), and Arithmetic Reasoning (MATH) benchmark datasets highlight the effectiveness of HALO, yielding a 14.4% average improvement over state-of-the-art baselines. Notably, HALO achieves up to 13.3% performance gain on the Moral Scenarios subject in the MMLU benchmark and up to 19.6% performance gain on the Algebra subarea in the MATH benchmark, indicating its advanced proficiency in tackling highly specialized and expert-level tasks. The code repository is available at https://github.com/23japhone/HALO.
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving [30.50203052125566]
projectname is a hierarchical multi-agent framework for general-purpose task solving.<n>projectname features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents.<n>Each sub-agent is equipped with general programming and analytical tools, as well as abilities to tackle a wide range of real-world specific tasks.
arXiv Detail & Related papers (2025-06-14T13:45:37Z) - AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
arXiv Detail & Related papers (2025-06-06T12:07:23Z) - Agentic Predictor: Performance Prediction for Agentic Workflows via Multi-View Encoding [56.565200973244146]
Agentic Predictor is a lightweight predictor for efficient agentic workflow evaluation.<n>By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations.
arXiv Detail & Related papers (2025-05-26T09:46:50Z) - AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios [51.46347732659174]
Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications.<n>AgentIF is the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios.
arXiv Detail & Related papers (2025-05-22T17:31:10Z) - Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning [76.10639521319382]
We propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework.<n>We show that Symbolic-MoE's instance-level expert selection improves performance by a large margin but -- when implemented naively -- can introduce a high computational overhead.
arXiv Detail & Related papers (2025-03-07T18:03:13Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
Large Language Model (LLM)-based agents have demonstrated remarkable success in solving complex tasks across a wide range of general-purpose applications.<n>However, their performance often degrades in context-specific scenarios, such as specialized industries or research domains.<n>To address this challenge, our work introduces a systematic approach to enhance the contextual adaptability of LLM-based agents.
arXiv Detail & Related papers (2025-02-18T15:07:06Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Planning with Multi-Constraints via Collaborative Language Agents [13.550774629515843]
This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative multi-agent systems.<n>PMC simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks.<n>PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%.
arXiv Detail & Related papers (2024-05-26T10:33:17Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.